

ELECTRICAL CIRCUIT THEORY AND TECHNOLOGY

A fully comprehensive text for courses in electrical principles, circuit theory and electrical technology, providing 800 worked examples and over 1,350 further problems for students to work through at their own pace. This book is ideal for students studying engineering for the first time as part of BTEC National and other pre-degree vocational courses, as well as Higher Nationals, Foundation Degrees and first-year undergraduate modules.

John Bird, BSc (Hons), CEng, CSci, CMath, FITE, FIMA, FCollT, is the former Head of Applied Electronics in the Faculty of Technology at Highbury College, Portsmouth, UK. More recently he has combined freelance lecturing and examining, and is the author of over 130 textbooks on engineering and mathematical subjects with worldwide sales of over one million copies. He is currently lecturing at the Defence School of Marine and Air Engineering in the Defence College of Technical Training at HMS Sultan, Gosport, Hampshire, UK. In Memory of Elizabeth

Electrical Circuit Theory and Technology

Sixth edition

John Bird

Sixth edition published 2017 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

and by Routledge 711 Third Avenue, New York, NY 10017

Routledge is an imprint of the Taylor & Francis Group, an informa business

© 2017 John Bird

The right of John Bird to be identified as author of this work has been asserted by him in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

First edition published by Newnes 1997 Fifth edition published by Routledge 2014

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data Names: Bird, J. O., author. Title: Electrical circuit theory and technology / John Bird. Description: 6th ed. | New York : Routledge, [2017] | Includes index. Identifiers: LCCN 2016038154| ISBN 9781138673496 | ISBN 9781315561929 Subjects: LCSH: Electric circuits. | Electrical engineering. Classification: LCC TK454 .B48 2017 | DDC 621.319/2–dc23 LC record available at https://lccn.loc.gov/2016038154

ISBN: 978-1-138-67349-6 (pbk) ISBN: 978-1-315-56192-9 (ebk)

Typeset in Times by Servis Filmsetting Ltd, Stockport, Cheshire

Visit the companion website: www.routledge.com/cw/bird

Contents

Preface

P	Part 1	Revision of some basic	
		mathematics	1
1	Some	mathematics revision	3
	1.1	Use of calculator and evaluating formulae	4
	1.2	Fractions	7
	1.3	Percentages	8
	1.4	Ratio and proportion	10
	1.5	Laws of indices	13
	1.6	Brackets	16
	1.7	Solving simple equations	16
	1.8	Transposing formulae	19
	1.9	Solving simultaneous equations	21
2	Furth	er mathematics revision	23
	2.1	Radians and degrees	24
	2.2	Measurement of angles	25
	2.3	Trigonometry revision	26
	2.4	Logarithms and exponentials	28
	2.5	Straight line graphs	33
	2.6	Gradients, intercepts and equation	
		of a graph	35
	2.7	Practical straight line graphs	37
	2.8	Calculating areas of common shapes	38

xii

Main formulae for Part 1 Revision of some basic mathematics

Part 2 Basic electrical engineering principles

3	Units associated with basic electrical			
	quanti	ties		
	3.1	SI units		

3.2	Charge	50
3.3	Force	50
3.4	Work	51
3.5	Power	52
3.6	Electrical potential and e.m.f.	53
3.7	Resistance and conductance	53

	3.8	Electrical power and energy	54
	3.9	Summary of terms, units and their symbols	55
4	An intr	oduction to electric circuits	56
	4.1	Standard symbols for electrical	
		components	57
	4.2	Electric current and quantity of	
		electricity	57
	4.3	Potential difference and resistance	58
	4.4	Basic electrical measuring	
		instruments	58
	4.5	Linear and non-linear devices	59
	4.6	Ohm's law	59
	4.7	Multiples and sub-multiples	59
	4.8	Conductors and insulators	61
	4.9	Electrical power and energy	61
	4.10	Main effects of electric current	64
	4.11	Fuses	64
	4.12	Insulation and the dangers of constant	
		high current flow	64
5	Resista	nce variation	65
	5.1	Resistor construction	66
	5.2	Resistance and resistivity	66
	5.3	Temperature coefficient of resistance	68
	5.4	Resistor colour coding and ohmic values	70
6		es and alternative sources of energy	73
	6.1	Introduction to batteries	74
	6.2	Some chemical effects of electricity	74
	6.3	The simple cell	75
	6.4	Corrosion	76
	6.5	E.m.f. and internal resistance of a cell	76
	6.6	Primary cells	78
	6.7	Secondary cells	79
	6.8	Lithium-ion batteries	81
	6.9	Cell capacity	84
	6.10	Safe disposal of batteries	84
	6.11	Fuel cells	84
	6.12	Alternative and renewable energy sources	85
	6.13	Solar energy	86
ŀ	Revision	Test 1	89

vi Contents

	Series a	and parallel networks	90
	7.1	Series circuits	91
	7.2	Potential divider	92
	7.3	Parallel networks	94
	7.4	Current division	96
	7.5	Loading effect	99
	7.6	Potentiometers and rheostats	100
	7.7	Relative and absolute voltages	103
	7.8	Earth potential and short circuits	104
	7.9	Wiring lamps in series and in parallel	104
8		tors and capacitance	106
	8.1	Introduction to capacitors	107
	8.2	Electrostatic field	107
	8.3	Electric field strength	108
	8.4	Capacitance	108
	8.5	Capacitors	109
	8.6	Electric flux density	110
	8.7	Permittivity	110
	8.8	The parallel plate capacitor	111
	8.9	Capacitors connected in parallel and series	112
	8.10	Dielectric strength	116
	8.11	-	117
	8.12	Practical types of capacitor	117
	8.13	Supercapacitors	119
	8.14	Discharging capacitors	121
9	Magnet	tic circuits	122
	9.1	Introduction to magnetism and	
		magnetic circuits	123
	9.2	Magnetic fields	124
	9.3	Magnetic flux and flux density	125
	9.4	Magnetomotive force and magnetic	
		field strength	125
	95	field strength Permeability and <i>B</i> – <i>H</i> curves	125 126
	9.5 9.6	Permeability and <i>B–H</i> curves	126
	9.6	Permeability and <i>B–H</i> curves Reluctance	126 127
		Permeability and <i>B–H</i> curves	126
	9.6 9.7	Permeability and <i>B–H</i> curves Reluctance Composite series magnetic circuits	126 127
	9.6 9.7	Permeability and <i>B–H</i> curves Reluctance Composite series magnetic circuits Comparison between electrical and	126 127 129
1	9.6 9.7 9.8	Permeability and <i>B–H</i> curves Reluctance Composite series magnetic circuits Comparison between electrical and magnetic quantities Hysteresis and hysteresis loss	126 127 129 132
	9.6 9.7 9.8 9.9 Revision	Permeability and <i>B–H</i> curves Reluctance Composite series magnetic circuits Comparison between electrical and magnetic quantities Hysteresis and hysteresis loss Test 2	126 127 129 132 132 132
] 10	9.6 9.7 9.8 9.9 Revision	Permeability and <i>B–H</i> curves Reluctance Composite series magnetic circuits Comparison between electrical and magnetic quantities Hysteresis and hysteresis loss Test 2 magnetism	126 127 129 132 132 134 135
	9.6 9.7 9.8 9.9 Revision) Electro 10.1	Permeability and <i>B–H</i> curves Reluctance Composite series magnetic circuits Comparison between electrical and magnetic quantities Hysteresis and hysteresis loss Test 2 magnetism Magnetic field due to an electric current	126 127 129 132 132 132 134
	9.6 9.7 9.8 9.9 Revision 10.1 10.2	Permeability and <i>B–H</i> curves Reluctance Composite series magnetic circuits Comparison between electrical and magnetic quantities Hysteresis and hysteresis loss Test 2 Magnetic field due to an electric current Electromagnets	126 127 129 132 132 132 134 135 136 137
	9.6 9.7 9.8 9.9 Revision 0 Electro 10.1 10.2 10.3	Permeability and <i>B–H</i> curves Reluctance Composite series magnetic circuits Comparison between electrical and magnetic quantities Hysteresis and hysteresis loss Test 2 magnetism Magnetic field due to an electric current Electromagnets Force on a current-carrying conductor	126 127 129 132 132 132 134 135 136 137
	9.6 9.7 9.8 9.9 Revision 10.1 10.2	Permeability and <i>B</i> – <i>H</i> curves Reluctance Composite series magnetic circuits Comparison between electrical and magnetic quantities Hysteresis and hysteresis loss Test 2 magnetism Magnetic field due to an electric current Electromagnets Force on a current-carrying conductor Principle of operation of a simple	126 127 129 132 132 132 134 135 136 137 139
	9.6 9.7 9.8 9.9 Revision D Electro 10.1 10.2 10.3 10.4	Permeability and <i>B</i> – <i>H</i> curves Reluctance Composite series magnetic circuits Comparison between electrical and magnetic quantities Hysteresis and hysteresis loss Test 2 magnetism Magnetic field due to an electric current Electromagnets Force on a current-carrying conductor Principle of operation of a simple d.c. motor	126 127 129 132 132 132
	9.6 9.7 9.8 9.9 Revision 0 Electro 10.1 10.2 10.3	Permeability and <i>B</i> – <i>H</i> curves Reluctance Composite series magnetic circuits Comparison between electrical and magnetic quantities Hysteresis and hysteresis loss Test 2 magnetism Magnetic field due to an electric current Electromagnets Force on a current-carrying conductor Principle of operation of a simple	126 127 129 132 132 132 134 135 136 137 139
	9.6 9.7 9.8 9.9 Revision D Electro 10.1 10.2 10.3 10.4	Permeability and <i>B</i> – <i>H</i> curves Reluctance Composite series magnetic circuits Comparison between electrical and magnetic quantities Hysteresis and hysteresis loss Test 2 magnetism Magnetic field due to an electric current Electromagnets Force on a current-carrying conductor Principle of operation of a simple d.c. motor Principle of operation of a moving-coil	126 127 129 132 132 132 134 135 136 137 139 142

11	Electron	magnetic induction	145
	11.1		146
		Laws of electromagnetic induction	147
	11.3	Rotation of a loop in a magnetic field	150
	11.4	Inductance	151
	11.5	Inductors	152
	11.6	Energy stored	153
	11.7	Inductance of a coil	153
	11.8	Mutual inductance	155
12	Electric	al measuring instruments and	
	measure		158
		Introduction	159
	12.2	Analogue instruments	159
	12.3	Shunts and multipliers	159
	12.4		161
	12.5	The ohmmeter	161
	12.6	Multimeters	162
	12.7	Wattmeters	162
	12.8	Instrument 'loading' effect	162
	12.9	The oscilloscope	164
	12.10	Virtual test and measuring instruments	169
	12.11	Virtual digital storage oscilloscopes	170
	12.12	Waveform harmonics	173
	12.13	Logarithmic ratios	174
	12.14	Null method of measurement	176
	12.15	Wheatstone bridge	177
	12.16	D.c. potentiometer	177
	12.17	A.c. bridges	178
	12.18	Measurement errors	179
13	Semicor	nductor diodes	182
	13.1	Types of material	183
	13.2	Semiconductor materials	183
	13.3	Conduction in semiconductor materials	185
	13.4	The p–n junction	185
	13.5	Forward and reverse bias	186
	13.6	Semiconductor diodes	189
	13.7	Characteristics and maximum ratings	190
	13.8	Rectification	190
	13.9	Zener diodes	190
	13.10	Silicon controlled rectifiers	192
	13.11	Light emitting diodes	193
		Varactor diodes	193
	13.13	Schottky diodes	193
14	Transist	tors	195
-	14.1	Transistor classification	196
	14.2	Bipolar junction transistors (BJTs)	196
	14.3	Transistor action	197
	14.4	Leakage current	198

14.5 Bias and current flow

14.6 Transistor operating configurations

14.7	Bipolar transistor characteristics	200
14.8	Transistor parameters	201
14.9	Current gain	202
14.10	Typical BJT characteristics and maximum	
	ratings	203
14.11	Field effect transistors	204
14.12	Field effect transistor characteristics	205
14.13	Typical FET characteristics and maximum	
	ratings	206
14.14	Transistor amplifiers	206
14.15	Load lines	208
Revision 7	Fest 3	213

Main formulae for Part 2 Basic electrical and electronic principles

Р	art 3	Electrical principles and technology	217
15	D.c. ci	rcuit theory	219
	15.1	Introduction	219
	15.2	Kirchhoff's laws	220
	15.3	The superposition theorem	224
	15.4	General d.c. circuit theory	226
	15.5	Thévenin's theorem	228
	15.6	Constant-current source	233
	15.7	Norton's theorem	233
	15.8	Thévenin and Norton equivalent networks	236
	15.9	Maximum power transfer theorem	239
16	Altern	ating voltages and currents	242
	16.1	Introduction	243
	16.2	The a.c. generator	243
	16.3	Waveforms	244
	16.4	A.c. values	245
	16.5	Electrical safety – insulation and fuses	248
	16.6	The equation of a sinusoidal waveform	248
	16.7	Combination of waveforms	251
	16.8	Rectification	254
	16.9	Smoothing of the rectified output wavefor	m 255
F	Revision	Test 4	257
17	Single	phase series a.c. circuits	258
		Purely resistive a.c. circuit	259

17.1	Purely resistive a.c. circuit	259
17.2	Purely inductive a.c. circuit	259
17.3	Purely capacitive a.c. circuit	260
17.4	R-L series a.c. circuit	261
17.5	R-C series a.c. circuit	264
17.6	R-L-C series a.c. circuit	266
17.7	Series resonance	269

	17.8	Q-factor	270
		Bandwidth and selectivity	272
		Power in a.c. circuits	272
	17.11	Power triangle and power factor	274
18	Single-p	bhase parallel a.c. circuits	277
	18.1	Introduction	278
	18.2	R-L parallel a.c. circuit	278
	18.3	R-C parallel a.c. circuit	279
	18.4	L-C parallel a.c. circuit	280
	18.5	<i>LR</i> – <i>C</i> parallel a.c. circuit	282
	18.6	Parallel resonance and Q-factor	285
	18.7	Power factor improvement	289
19	D.c. tra		294
	19.1	Introduction	295
	19.2	Charging a capacitor	295
	19.3	Time constant for a $C-R$ circuit	296
	19.4	Transient curves for a $C-R$ circuit	296
	19.5	Discharging a capacitor	300
	19.6	Camera flash	302
	19.7	Current growth in an $L-R$ circuit	302
	19.8	Time constant for an $L-R$ circuit	303
	19.9	Transient curves for an $L-R$ circuit	303
	19.10	Current decay in an $L-R$ circuit	305
	19.11	Switching inductive circuits	307
	19.12	The effect of time constant on a	
		rectangular waveform	307
20	Operati	onal amplifiers	309
	20.1	Introduction to operational amplifiers	310
	20.2	Some op amp parameters	311
	20.3	Op amp inverting amplifier	312
	20.4	Op amp non-inverting amplifier	314
	20.5	Op amp voltage-follower	315
	20.6	Op amp summing amplifier	315
	20.7	Op amp voltage comparator	316
	20.8	Op amp integrator	317
	20.9	Op amp differential amplifier	318
	20.10	Digital to analogue (D/A) conversion	320
		Analogue to digital (A/D) conversion	320

21	Ways o	f generating electricity – the present	
	and the	future	323
	21.1	Introduction	324
	21.2	Generating electrical power using coal	324
	21.3	Generating electrical power using oil	326
	21.4	Generating electrical power using	
		natural gas	327
	21.5	Generating electrical power using nuclear	
		energy	328

Revision Test 5

viii Contents

	21.6	Generating electrical power using hydro power	329
	21.7	Generating electrical power using pumped	1
	21.9	storage Generating electrical power using wind	330 331
	21.8		331
	21.9	power	331
	21.10	Generating electrical power using biomass	
		Generating electrical power using solar	333
	21.12	energy Harnessing the power of wind, tide and	555
	21.12	sun on an 'energy island' – a future	
		possibility?	334
22		hase systems	336
	22.1	Introduction	337
	22.2 22.3	Three-phase supply Star connection	337 337
	22.5 22.4	Delta connection	340
		Power in three-phase systems	340
	22.5	Measurement of power in three-phase	572
	22.0	systems	343
	22.7	Comparison of star and delta connections	348
	22.8	Advantages of three-phase systems	348
23	Transfo	rmers	349
	23.1	Introduction	350
	23.2		350
	23.3	Transformer no-load phasor diagram	352
	23.4	E.m.f. equation of a transformer	354
	23.5	Transformer on-load phasor diagram	356
	23.6	Transformer construction	357
	23.7	Equivalent circuit of a transformer	358
	23.8	Regulation of a transformer	359
	23.9	Transformer losses and efficiency	360
		Resistance matching	363
		Auto transformers	365
		Isolating transformers	367
		Three-phase transformers Current transformers	367 368
		Voltage transformers	369
	25.15	voltage transformers	309
R	Revision [Test 6	370
24	D.c. ma	chines	371
		Introduction	372
	24.2	The action of a commutator	372

24.3	D.c. machine construction	373
24.4	Shunt, series and compound windings	373
24.5	E.m.f. generated in an armature winding	374
24.6	D.c. generators	375
24.7	Types of d.c. generator and their	
	characteristics	376

24.8	D.c. machine losses	380
24.9	Efficiency of a d.c. generator	380
24.10	D.c. motors	381
24.11	Torque of a d.c. machine	382
24.12	Types of d.c. motor and their	
	characteristics	383
24.13	The efficiency of a d.c. motor	387
24.14	D.c. motor starter	389
24.15	Speed control of d.c. motors	390
24.16	Motor cooling	392

25	Three-p	hase induction motors	393
	25.1	Introduction	394
	25.2	Production of a rotating magnetic field	394
	25.3	Synchronous speed	396
	25.4	Construction of a three-phase induction motor	397
	25.5	Principle of operation of a three-phase induction motor	397
	25.6	Slip	398
	25.7	Rotor e.m.f. and frequency	399
	25.8	Rotor impedance and current	400
	25.9	Rotor copper loss	400
	25.10	Induction motor losses and efficiency	401
	25.11	Torque equation for an induction motor	402
	25.12	Induction motor torque–speed characteristics	404
	25.13	Starting methods for induction motors	405
	25.14	Advantages of squirrel-cage induction motors	406
	25.15	Advantages of wound rotor induction	
		motor	407
		Double cage induction motor	407
	25.17	Uses of three-phase induction motors	407

Main formulae for Part 3 Electrical principles and technology 409

Revision Test 7

Part 4	Advanced circuit theory and technology	411
26 Revisi	on of complex numbers	413
26.1	Introduction	413
26.2	Operations involving Cartesian complex	

	numbers	415
26.3	Complex equations	417
26.4	The polar form of a complex number	418

	26.5	Multiplication and division using complex	410
		numbers in polar form	419
	26.6	De Moivre's theorem – powers and roots	100
		of complex numbers	420
27	Applica	ntion of complex numbers to series	
	a.c. cire		423
	27.1	Introduction	423
	27.2	Series a.c. circuits	424
	27.3	Further worked problems on series	
		a.c. circuits	430
28	Applica	ation of complex numbers to parallel	
	a.c. net	· · ·	435
	28.1	Introduction	435
	28.2	Admittance, conductance and susceptance	436
		Parallel a.c. networks	439
	28.4	Further worked problems on parallel	
		a.c. networks	443
20	Dowow	in a.c. circuits	446
29	29.1		440 446
	29.1		447
	29.2	-	449
	29.5	Use of complex numbers for	449
	29.4	determination of power	450
	29.5	Power factor improvement	454
	27.5	rower netor improvement	151
D			
R	Revision	Test 8	459
			459 460
	A.c. bri		
	A.c. bri 30.1	idges Introduction	460
	A.c. bri 30.1	idges Introduction Balance conditions for an a.c. bridge	460 461
	A.c. bri 30.1 30.2	idges Introduction Balance conditions for an a.c. bridge Types of a.c. bridge circuit	460 461 461
30	A.c. bri 30.1 30.2 30.3 30.4	idges Introduction Balance conditions for an a.c. bridge Types of a.c. bridge circuit Worked problems on a.c. bridges	460 461 461 462 467
30	A.c. bri 30.1 30.2 30.3 30.4 Series 1	idges Introduction Balance conditions for an a.c. bridge Types of a.c. bridge circuit Worked problems on a.c. bridges resonance and Q-factor	460 461 461 462 467 471
30	A.c. bri 30.1 30.2 30.3 30.4 Series 1 31.1	idges Introduction Balance conditions for an a.c. bridge Types of a.c. bridge circuit Worked problems on a.c. bridges resonance and Q-factor Introduction	460 461 461 462 467 471 472
30	A.c. bri 30.1 30.2 30.3 30.4 Series 1 31.1 31.2	idges Introduction Balance conditions for an a.c. bridge Types of a.c. bridge circuit Worked problems on a.c. bridges resonance and Q-factor Introduction Series resonance	460 461 461 462 467 471 472 472
30	A.c. bri 30.1 30.2 30.3 30.4 Series 1 31.1 31.2 31.3	idges Introduction Balance conditions for an a.c. bridge Types of a.c. bridge circuit Worked problems on a.c. bridges resonance and Q-factor Introduction Series resonance Q-factor	460 461 461 462 467 471 472 472 472
30	A.c. bri 30.1 30.2 30.3 30.4 Series 1 31.1 31.2 31.3 31.4	idges Introduction Balance conditions for an a.c. bridge Types of a.c. bridge circuit Worked problems on a.c. bridges resonance and Q-factor Introduction Series resonance Q-factor Voltage magnification	460 461 462 467 471 472 472 472 474
30	A.c. bri 30.1 30.2 30.3 30.4 Series 1 31.1 31.2 31.3 31.4 31.5	idges Introduction Balance conditions for an a.c. bridge Types of a.c. bridge circuit Worked problems on a.c. bridges resonance and Q-factor Introduction Series resonance Q-factor Voltage magnification Q-factors in series	460 461 462 467 471 472 472 472 474 476 478
30	A.c. bri 30.1 30.2 30.3 30.4 Series 1 31.1 31.2 31.3 31.4 31.5 31.6	idges Introduction Balance conditions for an a.c. bridge Types of a.c. bridge circuit Worked problems on a.c. bridges resonance and Q-factor Introduction Series resonance Q-factor Voltage magnification Q-factors in series Bandwidth	460 461 462 467 471 472 472 472 474
30	A.c. bri 30.1 30.2 30.3 30.4 Series 1 31.1 31.2 31.3 31.4 31.5	idges Introduction Balance conditions for an a.c. bridge Types of a.c. bridge circuit Worked problems on a.c. bridges resonance and Q-factor Introduction Series resonance Q-factor Voltage magnification Q-factors in series Bandwidth Small deviations from the resonant	460 461 462 467 471 472 472 472 474 476 478 479
30	A.c. bri 30.1 30.2 30.3 30.4 Series 1 31.1 31.2 31.3 31.4 31.5 31.6 31.7	idges Introduction Balance conditions for an a.c. bridge Types of a.c. bridge circuit Worked problems on a.c. bridges resonance and Q-factor Introduction Series resonance Q-factor Voltage magnification Q-factors in series Bandwidth Small deviations from the resonant frequency	460 461 462 467 471 472 472 474 476 478 479 483
30	A.c. bri 30.1 30.2 30.3 30.4 Series 1 31.1 31.2 31.3 31.4 31.5 31.6 31.7 Paralle	idges Introduction Balance conditions for an a.c. bridge Types of a.c. bridge circuit Worked problems on a.c. bridges resonance and Q-factor Introduction Series resonance Q-factor Voltage magnification Q-factors in series Bandwidth Small deviations from the resonant frequency I resonance and Q-factor	460 461 462 467 471 472 472 474 476 478 479 483 483
30	A.c. bri 30.1 30.2 30.3 30.4 Series I 31.1 31.2 31.3 31.4 31.5 31.6 31.7 Paralle 32.1	idges Introduction Balance conditions for an a.c. bridge Types of a.c. bridge circuit Worked problems on a.c. bridges resonance and Q-factor Introduction Series resonance Q-factor Voltage magnification Q-factors in series Bandwidth Small deviations from the resonant frequency I resonance and Q-factor Introduction	460 461 462 467 471 472 472 474 476 478 479 483 486 486
30	A.c. bri 30.1 30.2 30.3 30.4 Series I 31.1 31.2 31.3 31.4 31.5 31.6 31.7 Paralle 32.1 32.2	idges Introduction Balance conditions for an a.c. bridge Types of a.c. bridge circuit Worked problems on a.c. bridges resonance and Q-factor Introduction Series resonance Q-factor Voltage magnification Q-factors in series Bandwidth Small deviations from the resonant frequency I resonance and Q-factor Introduction The <i>LR</i> - <i>C</i> parallel network	460 461 462 467 471 472 472 472 474 476 478 479 483 486 486 487
30	A.c. bri 30.1 30.2 30.3 30.4 Series 1 31.1 31.2 31.3 31.4 31.5 31.6 31.7 Paralle 32.1 32.2 32.3	idges Introduction Balance conditions for an a.c. bridge Types of a.c. bridge circuit Worked problems on a.c. bridges resonance and Q-factor Introduction Series resonance Q-factor Voltage magnification Q-factors in series Bandwidth Small deviations from the resonant frequency I resonance and Q-factor Introduction The <i>LR</i> – <i>C</i> parallel network Dynamic resistance	460 461 462 467 471 472 472 472 474 476 478 479 483 486 486 487 488
30	A.c. bri 30.1 30.2 30.3 30.4 Series 1 31.1 31.2 31.3 31.4 31.5 31.6 31.7 Paralle 32.1 32.2 32.3 32.4	idgesIntroductionBalance conditions for an a.c. bridgeTypes of a.c. bridge circuitWorked problems on a.c. bridgesresonance and Q-factorIntroductionSeries resonanceQ-factorVoltage magnificationQ-factors in seriesBandwidthSmall deviations from the resonantfrequencyI resonance and Q-factorIntroductionThe $LR-C$ parallel networkDynamic resistanceThe $LR-CR$ parallel network	460 461 462 467 471 472 472 472 474 476 478 479 483 486 486 487 488 488
30	A.c. bri 30.1 30.2 30.3 30.4 Series I 31.1 31.2 31.3 31.4 31.5 31.6 31.7 Paralle 32.1 32.2 32.3 32.4 32.5	idges Introduction Balance conditions for an a.c. bridge Types of a.c. bridge circuit Worked problems on a.c. bridges resonance and Q-factor Introduction Series resonance Q-factor Voltage magnification Q-factors in series Bandwidth Small deviations from the resonant frequency I resonance and Q-factor Introduction The <i>LR</i> – <i>C</i> parallel network Dynamic resistance The <i>LR</i> – <i>CR</i> parallel network Q-factor in a parallel network	460 461 462 467 471 472 472 472 474 476 478 479 483 486 486 487 488
30	A.c. bri 30.1 30.2 30.3 30.4 Series 1 31.1 31.2 31.3 31.4 31.5 31.6 31.7 Paralle 32.1 32.2 32.3 32.4	idgesIntroductionBalance conditions for an a.c. bridgeTypes of a.c. bridge circuitWorked problems on a.c. bridgesresonance and Q-factorIntroductionSeries resonanceQ-factorVoltage magnificationQ-factors in seriesBandwidthSmall deviations from the resonantfrequencyI resonance and Q-factorIntroductionThe $LR-C$ parallel networkDynamic resistanceThe $LR-CR$ parallel network	460 461 462 467 471 472 472 472 474 476 478 479 483 486 486 487 488 488
303132	A.c. bri 30.1 30.2 30.3 30.4 Series I 31.1 31.2 31.3 31.4 31.5 31.6 31.7 Paralle 32.1 32.2 32.3 32.4 32.5	idges Introduction Balance conditions for an a.c. bridge Types of a.c. bridge circuit Worked problems on a.c. bridges resonance and Q-factor Introduction Series resonance Q-factor Voltage magnification Q-factors in series Bandwidth Small deviations from the resonant frequency I resonance and Q-factor Introduction The <i>LR</i> – <i>C</i> parallel network Dynamic resistance The <i>LR</i> – <i>CR</i> parallel network Q-factor in a parallel network Further worked problems on parallel resonance and Q-factor	 460 461 462 467 471 472 472 474 476 478 479 483 486 487 488 489

33		ction to network analysis	497
	33.1	Introduction	497
	33.2	0	400
	22.2	determinants	498
24	33.3		499
34		urrent and nodal analysis Mesh-current analysis	507 507
	34.1	-	511
		· · · · · · · · · · · · · · · · · · ·	
35		erposition theorem	518
	35.1	Introduction	518
	35.2	8 1 1	518
	35.3	Further worked problems on the superposition theorem	523
36	Theven 36.1	in's and Norton's theorems Introduction	528
	36.2	Thévenin's theorem	528 520
	36.2 36.3		529
	30.5	Further worked problems on Thévenin's theorem	535
	36.4	Norton's theorem	539
	36.5		546
	50.5	The vening and Tronton equivalent networks	510
F	Revision	Test 10	551
37	Delta-st	tar and star–delta transformations	552
	37.1	Introduction	552
	37.2	Delta and star connections	552
	37.3	Delta-star transformation	553
	37.4	Star-delta transformation	561
38		im power transfer theorems and	
	impeda	nce matching	565
	38.1	Maximum power transfer theorems	566
	38.2	Impedance matching	571
F	Revision 7	Fest 11	574
20	c 1		
39		x waveforms Introduction	575 576
	39.1 39.2	11111 0 444 0 1011	370
	39.2	The general equation for a complex waveform	576
	39.3	Harmonic synthesis	577
	39.4	Fourier series of periodic and non-periodic	
	57.4	functions	585
	39.5	Even and odd functions and Fourier series	000
		over any range	590
	39.6	R.m.s. value, mean value and the form	
		factor of a complex wave	594
	39.7	Power associated with complex waves	597
	39.8	Harmonics in single-phase circuits	599
	39.9	Further worked problems on harmonics	
		in single-phase circuits	602
		Resonance due to harmonics	606
	39.11	Sources of harmonics	608

x Contents

10			(10
40		rical method of harmonic analysis	612
	40.1	Introduction	612
	40.2	Harmonic analysis on data given in tabular or graphical form	612
	40.3	Complex waveform considerations	616
	40.5	Complex wavelorm considerations	010
41	Magnet	ic materials	619
	41.1	Revision of terms and units used with	
		magnetic circuits	620
	41.2	Magnetic properties of materials	621
	41.3	Hysteresis and hysteresis loss	622
	41.4	Eddy current loss	626
	41.5	Separation of hysteresis and eddy current	
		losses	629
	41.6	Non-permanent magnetic materials	631
	41.7	Permanent magnetic materials	633
D	Revision 7	Foot 10	34
R	Levision 1	lest 12 0	54
42		ics and dielectric loss	635
		Electric fields, capacitance and permittivity	635
		Polarization	636
		Dielectric strength	636
		Thermal effects	637
		Mechanical properties	638
	42.6	Types of practical capacitor	638
	42.7	Liquid dielectrics and gas insulation	638
	42.8	Dielectric loss and loss angle	638
43	Field th	eorv	642
	43.1	Field plotting by curvilinear squares	643
	43.2	Capacitance between concentric cylinders	646
	43.3	Capacitance of an isolated twin line	651
	43.4	Energy stored in an electric field	654
	43.5	Induced e.m.f. and inductance	656
	43.6	Inductance of a concentric cylinder (or	
		coaxial cable)	656
	43.7	Inductance of an isolated twin line	659
	43.8	Energy stored in an electromagnetic field	662
44	Attenua	tow	665
44	44.1	Introduction	666
	44.2		666
	44.3	Logarithmic ratios	668
	44.4	Symmetrical T- and π -attenuators	670
	44.5	Insertion loss	675
	44.6	Asymmetrical T- and π -sections	678
		The L-section attenuator	681
	44.8	Two-port networks in cascade	683
	44.9	ABCD parameters	686
		ABCD parameters for networks	689
		Characteristic impedance in terms of	507
	1 1	ABCD parameters	695
		-	

Revision Test 13

45

46

47

48

Filter n	etworks	698
45.1	Introduction	698
45.2	Basic types of filter sections	699
45.3		
	attenuation of filter sections	701
45.4	Ladder networks	702
45.5	Low-pass filter sections	703
45.6	High-pass filter sections	709
45.7	Propagation coefficient and time delay in	
	filter sections	714
45.8	' <i>m</i> -derived' filter sections	720
45.9	Practical composite filters	725
Magne	tically coupled circuits	728
46.1	Introduction	728
46.2	Self-inductance	728
46.3	Mutual inductance	729
46.4	Coupling coefficient	730
46.5	Coils connected in series	731
46.6	Coupled circuits	734
46.7	Dot rule for coupled circuits	739
Transn	nission lines	746
47.1	Introduction	746
47.2	Transmission line primary constants	747
	Dhase delay wavelength and velocity of	

47.3	Phase delay, wavelength and velocity of	
	propagation	748
47.4	Current and voltage relationships	749
47.5	Characteristic impedance and	
	propagation coefficient in terms of the	
	primary constants	751
47.6	Distortion on transmission lines	755
47.7	Wave reflection and the reflection	
	coefficient	757
47.8	Standing-waves and the standing-wave	
	ratio	760
Transie	ents and Laplace transforms	765
48.1	Introduction	766
48.2	Response of <i>R</i> – <i>C</i> series circuit to a step	
	input	766
48.3	Response of $R-L$ series circuit to a step	
	input	768
48.4	L-R-C series circuit response	771
48.5	Introduction to Laplace transforms	774
48.6	Inverse Laplace transforms and the	
	1	

48.7 Laplace transform analysis directly from the circuit diagram 784

Revision	Test 14	801
48.9	Initial conditions	797
	transforms	794
48.8	<i>L</i> – <i>R</i> – <i>C</i> series circuit using Laplace	

Main formulae for Part 4 Advanced circuit	
theory and technology	802
Part 5 General reference	807
Standard electrical quantities – their symbols	
and units	809
Greek alphabet	812
Common prefixes	813
Resistor colour coding and ohmic values	814
Answers to Practice Exercises	815
Index	837

On the Website

Some practical laboratory experiments

1	Ohm's law	2
2	Series-parallel d.c. circuit	3
3	Superposition theorem	4
4	Thévenin's theorem	6
5	Use of a CRO to measure voltage,	
	frequency and phase	8
6	Use of a CRO with a bridge rectifier circuit	9
7	Measurement of the inductance of a coil	10
8	Series a.c. circuit and resonance	11
9	Parallel a.c. circuit and resonance	13
10	Charging and discharging a capacitor	15
	To download and edit go to: www.routledge.com/cw/bird	
	www.iouncu5e.com/ew/onu	

Preface

Electrical Circuit Theory and Technology 6th Edition provides coverage for a wide range of courses that contain electrical principles, circuit theory and technology in their syllabuses, from **introductory to degree level** – and including Edexcel BTEC Levels 2 to 5 National Certificate/Diploma, Higher National Certificate/Diploma and Foundation degree in Engineering

In this new sixth edition, **new material added** includes some mathematics revision needed for electrical and electronic principles, ways of generating electricity – the present and the future (including more on renewable energy), more on lithium-ion batteries, along with other minor modifications.

The text is set out in five parts as follows:

PART 1, comprising chapters 1 to 12, involves **Revision of some Basic Mathematics** needed for Electrical and Electronic Principles.

PART 2, involving chapters 3 to 14, contains **Basic Electrical Engineering Principles** which any student wishing to progress in electrical engineering would need to know. An introduction to units, electrical circuits, resistance variation, batteries and alternative sources of energy, series and parallel circuits, capacitors and capacitance, magnetic circuits, electromagnetism, electromagnetic induction, electrical measuring instruments and measurements, semiconductor diodes and transistors are all included in this section.

PART 3, involving chapters 15 to 25, contains **Electrical Principles and Technology** suitable for National Certificate, National Diploma and City and Guilds courses in electrical and electronic engineering. D.c. circuit theory, alternating voltages and currents, singlephase series and parallel circuits, d.c. transients, operational amplifiers, ways of generating electricity, three-phase systems, transformers, d.c. machines and three-phase induction motors are all included in this section.

PART 4, involving chapters 26 to 48, contains **Advanced Circuit Theory and Technology** suitable for Degree, Foundation degree, Higher National Certificate/Diploma and City and Guilds courses in electrical

and electronic/telecommunications engineering. The three earlier sections of the book will provide a valuable reference/revision for students at this level.

Complex numbers and their application to series and parallel networks, power in a.c. circuits, a.c. bridges, series and parallel resonance and Q-factor, network analysis involving Kirchhoff's laws, mesh and nodal analysis, the superposition theorem, Thévenin's and Norton's theorems, delta-star and star-delta transforms, maximum power transfer theorems and impedance matching, complex waveforms, Fourier series, harmonic analysis, magnetic materials, dielectrics and dielectric loss, field theory, attenuators, filter networks, magnetically coupled circuits, transmission line theory and transients and Laplace transforms are all included in this section.

PART 5 provides a short **General Reference** for standard electrical quantities – their symbols and units, the Greek alphabet, common prefixes and resistor colour coding and ohmic values.

At the beginning of each of the 48 chapters a brief explanation as to why it is important to understand the material contained within that chapter is included, together with a list of **learning objectives**.

At the end of each of the first four parts of the text is a handy reference of the **main formulae** used.

There are a number of Internet downloads freely available to both students and lecturers/instructors; these are listed on page xiii.

It is not possible to acquire a thorough understanding of electrical principles, circuit theory and technology without working through a large number of numerical problems. It is for this reason that *Electrical Circuit Theory and Technology 6th Edition* contains nearly **800 detailed worked problems**, together with some **1350 further problems (with answers at the back of the book)**, arranged within **202 Practice Exercises** that appear every few pages throughout the text. Some **1153 line diagrams** further enhance the understanding of the theory. **Fourteen Revision Tests** have been included, interspersed within the text every few chapters. For example, Revision Test 1 tests understanding of chapters 3 to 6, Revision Test 2 tests understanding of chapters 7 to 9, Revision Test 3 tests understanding of chapters 10 to 14, and so on. These Revision Tests do not have answers given since it is envisaged that lecturers/instructors could set the Revision Tests for students to attempt as part of their course structure. Lecturers/instructors may obtain a complimentary set of solutions of the Revision Tests in an **Instructor's Manual** available from the publishers via the internet – see below.

Learning by example is at the heart of *Electrical Circuit Theory and Technology 6th Edition.*

JOHN BIRD

Royal Naval Defence College of Marine and Air Engineering, HMS Sultan, formerly University of Portsmouth and Highbury College, Portsmouth

John Bird is the former Head of Applied Electronics in the Faculty of Technology at Highbury College, Portsmouth, UK. More recently, he has combined freelance lecturing at the University of Portsmouth with Examiner responsibilities for Advanced Mathematics with City and Guilds, and examining for the International Baccalaureate. He is the author of some 130 textbooks on engineering and mathematical subjects with worldwide sales of over one million copies. He is currently lecturing at the Defence School of Marine and Air Engineering in the Defence College of Technical Training at HMS Sultan, Gosport, Hampshire, UK.

Free Web downloads

The following support material is available from www.routledge.com/cw/bird

For Students:

- 1. Full solutions to all 1350 further questions in the Practice Exercises
- 2. A set of formulae for each of the first four sections of the text
- 3. Multiple choice questions
- 4. Information on 38 Engineers/Scientists mentioned in the text

For Lecturers/Instructors:

- 1-4. As per students 1-4 above
 - 5. Full solutions and marking scheme for each of the 14 Revision Tests; also, each test may be downloaded.
 - 6. Lesson Plans and revision material. Typical 30-week lesson plans for 'Electrical and Electronic Principles', Unit 6, and 'Further Electrical Principles', Unit 64, are included, together with two practice examination question papers (with solutions) for each of the modules.
 - 7. Ten practical Laboratory Experiments are available. It may be that tutors will want to edit these experiments to suit their own equipment/component availability.
 - 8. All 1153 illustrations used in the text may be downloaded for use in PowerPoint Presentations.

Part 1

Revision of some basic mathematics

Chapter 1

Some mathematics revision

Why it is important to understand: Some mathematics revision

Mathematics is a vital tool for professional and chartered engineers. It is used in electrical and electronic engineering, in mechanical and manufacturing engineering, in civil and structural engineering, in naval architecture and marine engineering and in aeronautical and rocket engineering. In these various branches of engineering, it is very often much cheaper and safer to design your artefact with the aid of mathematics – rather than through guesswork. 'Guesswork' may be reasonably satisfactory if you are designing an exactly similar artefact as one that has already proven satisfactory; however, the classification societies will usually require you to provide the calculations proving that the artefact is safe and sound. Moreover, these calculations may not be readily available to you and you may have to provide fresh calculations, to prove that your artefact is 'roadworthy'. For example, if you design a tall building or a long bridge by 'guesswork', and the building or bridge do not prove to be structurally reliable, it could cost you a fortune to rectify the deficiencies. This cost may dwarf the initial estimate you made to construct these structures, and cause you to go bankrupt. Thus, without mathematics, the prospective professional or chartered engineer is very severely disadvantaged.

Knowledge of mathematics provides the basis for all engineering.

At the end of this chapter you should be able to:

- use a calculator and evaluate formulae
- manipulate fractions
- · understand and perform calculations with percentages
- appreciate ratios and direct and inverse proportion
- understand and use the laws of indices
- expand equations containing brackets
- solve simple equations
- transpose formulae
- solve simultaneous equations in two unknowns

Electrical Circuit Theory and Technology. 978-1-138-67349-6, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.

1.1 Use of calculator and evaluating formulae

In engineering, calculations often need to be performed. For simple numbers it is useful to be able to use mental arithmetic. However, when numbers are larger an electronic calculator needs to be used.

In engineering calculations it is essential to have a **scientific notation calculator** which will have all the necessary functions needed, and more. This chapter assumes you have a **CASIO fx-991ES PLUS calculator**, or similar. If you can accurately use a calculator, your confidence with engineering calculations will improve.

Check that you can use a calculator in the following Practice Exercise.

Practice Exercise 1 Use of calculator (Answers on page 815)

- 1. Evaluate 378.37 - 298.651 + 45.64 - 94.562
- 2. Evaluate $\frac{17.35 \times 34.27}{41.53 \div 3.76}$ correct to 3 decimal places
- 3. Evaluate $\frac{(4.527 + 3.63)}{(452.51 \div 34.75)} + 0.468$ correct to 5 significant figures
- 4. Evaluate $52.34 \frac{(912.5 \div 41.46)}{(24.6 13.652)}$ correct to 3 decimal places
- 5. Evaluate $\frac{52.14 \times 0.347 \times 11.23}{19.73 \div 3.54}$ correct to 4 significant figures
- 6. Evaluate 6.85² correct to 3 decimal places
- 7. Evaluate $(0.036)^2$ in engineering form
- 8. Evaluate 1.3^3
- 9. Evaluate $(0.38)^3$ correct to 4 decimal places
- 10. Evaluate $(0.018)^3$ in engineering form
- 11. Evaluate $\frac{1}{0.00725}$ correct to 1 decimal place
- 12. Evaluate $\frac{1}{0.065} \frac{1}{2.341}$ correct to 4 significant figures

- 13. Evaluate 2.1⁴
- 14. Evaluate $(0.22)^5$ correct to 5 significant figures in engineering form
- 15. Evaluate $(1.012)^7$ correct to 4 decimal places
- 16. Evaluate $1.1^3 + 2.9^4 4.4^2$ correct to 4 significant figures
- 17. Evaluate $\sqrt{34528}$ correct to 2 decimal places
- 18. Evaluate $\sqrt[3]{17}$ correct to 3 decimal places
- 19. Evaluate $\sqrt[6]{2451} \sqrt[4]{46}$ correct to 3 decimal places

Express the answers to questions 20 to 23 in engineering form.

20. Evaluate $5 \times 10^{-3} \times 7 \times 10^{8}$

21. Evaluate
$$\frac{6 \times 10^3 \times 14 \times 10^{-4}}{2 \times 10^6}$$

- 22. Evaluate $\frac{56.43 \times 10^{-3} \times 3 \times 10^{4}}{8.349 \times 10^{3}}$ correct to 3 decimal places
- 23. Evaluate $\frac{99 \times 10^5 \times 6.7 \times 10^{-3}}{36.2 \times 10^{-4}}$ correct to 4
 - significant figures
- 24. Evaluate $\frac{4}{5} \frac{1}{3}$ as a decimal, correct to 4 decimal places
- 25. Evaluate $\frac{2}{3} \frac{1}{6} + \frac{3}{7}$ as a fraction
- 26. Evaluate $2\frac{5}{6} + 1\frac{5}{8}$ as a decimal, correct to 4 significant figures
- 27. Evaluate $5\frac{6}{7} 3\frac{1}{8}$ as a decimal, correct to 4 significant figures
- 28. Evaluate $\frac{3}{4} \times \frac{4}{5} \frac{2}{3} \div \frac{4}{9}$ as a fraction
- 29. Evaluate $8\frac{8}{9} \div 2\frac{2}{3}$ as a mixed number
- 30. Evaluate $3\frac{1}{5} \times 1\frac{1}{3} 1\frac{7}{10}$ as a decimal, correct to 3 decimal places

31. Evaluate
$$\frac{\left(4\frac{1}{5}-1\frac{2}{3}\right)}{\left(3\frac{1}{4}\times2\frac{3}{5}\right)}-\frac{2}{9}$$
 as a decimal,

correct to 3 significant figures

In questions 32 to 38, evaluate correct to 4 decimal places.

- 32. Evaluate $\sin 67^{\circ}$
- 33. Evaluate $\tan 71^{\circ}$
- 34. Evaluate $\cos 63.74^{\circ}$
- 35. Evaluate $\tan 39.55^\circ \sin 52.53^\circ$
- 36. Evaluate sin(0.437 rad)
- 37. Evaluate tan(5.673 rad)

38. Evaluate
$$\frac{(\sin 42.6^{\circ})(\tan 83.2^{\circ})}{\cos 13.8^{\circ}}$$

In questions 39 to 45, evaluate correct to 4 significant figures.

- **39**. 1.59π
- 40. $2.7(\pi 1)$

41.
$$\pi^2\left(\sqrt{13}-1\right)$$

42.
$$8.5e^{-2.5}$$

43.
$$3e^{(2\pi-1)}$$

44.
$$\sqrt{\left[\frac{5.52\pi}{2e^{-2}\times\sqrt{26.73}}\right]}$$

45.
$$\sqrt{\left[\frac{e^{\left(2-\sqrt{3}\right)}}{\pi\times\sqrt{8.57}}\right]}$$

Evaluation of formulae

The statement y = mx + c is called a **formula** for y in terms of m, x and c.

y, m, x and c are called **symbols**.

When given values of m, x and c we can evaluate y. There are a large number of formulae used in engineering and in this section we will insert numbers in place of symbols to evaluate engineering quantities.

Here are some practical examples. Check with your calculator that you agree with the working and answers.

Problem 1. In an electrical circuit the voltage V is given by Ohm's law, i.e. V = IR. Find, correct to 4 significant figures, the voltage when I = 5.36 A and $R = 14.76 \Omega$

$$V = IR = I \times R = 5.36 \times 14.76$$

Hence, voltage V = 79.11 V, correct to 4 significant figures

Problem 2. Velocity v is given by v = u + at. If u = 9.54 m/s, $a = 3.67 \text{ m/s}^2$ and t = 7.82 s, find v, correct to 3 significant figures.

$$v = u + at = 9.54 + 3.67 \times 7.82$$
$$= 9.54 + 28.6994 = 38.2394$$

Hence, velocity v = 38.2 m/s, correct to 3 significant figures

Problem 3. The area, A, of a circle is given by $A = \pi r^2$. Determine the area correct to 2 decimal places, given radius r = 5.23 m.

$$A = \pi r^2 = \pi (5.23)^2 = \pi (27.3529)$$

Hence, area, $A = 85.93 \text{ m}^2$, correct to 2 decimal places

Problem 4. Density $= \frac{\text{mass}}{\text{volume}}$. Find the density when the mass is 6.45 kg and the volume is $300 \times 10^{-6} \text{ m}^3$.

Density =
$$\frac{\text{mass}}{\text{volume}} = \frac{6.45 \text{ kg}}{300 \times 10^{-6} \text{ m}^3} = 21500 \text{ kg/m}^3$$

Problem 5. The power, P watts, dissipated in an electrical circuit is given by the formula $P = \frac{V^2}{R}$. Evaluate the power, correct to 4 significant figures, given that V = 230 V and $R = 35.63\Omega$

$$P = \frac{V^2}{R} = \frac{(230)^2}{35.63} = \frac{52900}{35.63} = 1484.70390\dots$$

Press ENG and $1.48470390.. \times 10^3$ appears on the screen

Hence, power, P = 1485 W or 1.485 kW correct to 4 significant figures.

Problem 6. Resistance, R Ω , varies with temperature according to the formula $R = R_0(1 + \alpha t)$. Evaluate R, correct to 3 significant figures, given $R_0 = 14.59$, $\alpha = 0.0043$ and t = 80

$$R = R_0(1 + \alpha t) = 14.59[1 + (0.0043)(80)]$$

$$= 14.59(1 + 0.344) = 14.59(1.344)$$

Hence, resistance, $\mathbf{R} = 19.6 \Omega$, correct to 3 significant figures

Problem 7. The current, I amperes, in an a.c. circuit is given by: $I = \frac{V}{\sqrt{(R^2 + X^2)}}$ Evaluate the current, correct to 2 decimal places, when $V = 250 \text{ V}, \text{ R} = 25.0 \Omega$ and $X = 18.0 \Omega$

$$I = \frac{V}{\sqrt{(R^2 + X^2)}} = \frac{250}{\sqrt{(25.0^2 + 18.0^2)}} = 8.11534341\dots$$

Hence, current, I = 8.12 A, correct to 2 decimal places

Now try the following Practice Exercise

Practice Exercise 2 Evaluation of formulae (Answers on page 815)

- 1. The area A of a rectangle is given by the formula $A = l \times b$. Evaluate the area, correct to 2 decimal places, when l = 12.4 cm and b = 5.37 cm
- 2. The circumference C of a circle is given by the formula $C = 2\pi r$. Determine the circumference, correct to 2 decimal places, given r = 8.40 mm
- 3. A formula used in connection with gases is $R = \frac{PV}{T}$. Evaluate R when P = 1500, V = 5 and T = 200
- 4. The velocity of a body is given by v = u + at. The initial velocity u is measured when time t is 15 seconds and found to be 12 m/s. If the acceleration a is 9.81 m/s² calculate the final velocity v
- 5. Calculate the current I in an electrical circuit, correct to 3 significant figures, when I = V/Ramperes when the voltage V is measured and

found to be 7.2 V and the resistance R is $17.7\,\Omega$

- 6. Find the distance s, given that $s = \frac{1}{2}gt^2$. Time t = 0.032 seconds and acceleration due to gravity $g = 9.81 \text{ m/s}^2$. Give the answer in millimetres correct to 3 significant figures.
- 7. The energy stored in a capacitor is given by $E = \frac{1}{2}CV^2$ joules. Determine the energy when capacitance $C = 5 \times 10^{-6}$ farads and voltage V = 240 V
- 8. Find the area A of a triangle, correct to 1 decimal place, given $A = \frac{1}{2}$ bh, when the base length b is 23.42 m and the height h is 53.7 m
- 9. Resistance R₂ is given by R₂ = R₁(1 + α t). Find R₂, correct to 4 significant figures, when R₁ = 220, α = 0.00027 and t = 75.6
- 10. Density = $\frac{\text{mass}}{\text{volume}}$. Find the density, correct to 4 significant figures, when the mass is 2.462 kg and the volume is 173 cm³. Give the answer in units of kg/m³. Note that $1 \text{ cm}^3 = 10^{-6} \text{m}^3$
- 11. Evaluate resistance R_T , correct to 4 significant figures, given $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ when $R_1 = 5.5 \Omega$, $R_2 = 7.42 \Omega$ and $R_3 = 12.6 \Omega$
- 12. The potential difference, V volts, available at battery terminals is given by V = E Ir. Evaluate V when E = 5.62, I = 0.70 and R = 4.30
- 13. The current I amperes flowing in a number of cells is given by $I = \frac{nE}{R+nr}$. Evaluate the current, correct to 3 significant figures, when n = 36. E = 2.20, R = 2.80 and r = 0.50
- 14. Energy, E joules, is given by the formula $E = \frac{1}{2}LI^2$. Evaluate the energy when L = 5.5 H and I = 1.2 A
- 15. The current I amperes in an a.c. circuit is given by $I = \frac{V}{\sqrt{(R^2 + X^2)}}$. Evaluate the

current, correct to 4 significant figures, when $V = 250 V, R = 11.0 \Omega$ and $X = 16.2 \Omega$

1.2 Fractions

An example of a fraction is $\frac{2}{3}$ where the top line, i.e. the 2, is referred to as the **numerator** and the bottom line, i.e. the 3, is referred to as the **denominator**.

A proper fraction is one where the numerator is smaller than the denominator, examples being $\frac{2}{3}$, $\frac{1}{2}$, 3 5

$$\frac{3}{8}$$
, $\frac{3}{16}$, and so on

An improper fraction is one where the denominator is smaller than the numerator, examples being $\frac{3}{2}$, $\frac{2}{1}$, $\frac{8}{3}$, $\frac{16}{5}$, and so on.

Addition of fractions is demonstrated in the following worked problems.

Problem 8. Evaluate A, given
$$A = \frac{1}{2} + \frac{1}{3}$$

The lowest common denominator of the two denominators 2 and 3 is 6, i.e. 6 is the lowest number that both 2 and 3 will divide into.

Then $\frac{1}{2} = \frac{3}{6}$ and $\frac{1}{3} = \frac{2}{6}$ i.e. both $\frac{1}{2}$ and $\frac{1}{3}$ have the common denominator, namely 6.

The two fractions can therefore be added as:

$$\mathbf{A} = \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{3+2}{6} = \frac{5}{6}$$

Problem 9. Evaluate A, given
$$A = \frac{2}{3} + \frac{3}{4}$$

A common denominator can be obtained by multiplying the two denominators together, i.e. the common denominator is $3 \times 4 = 12$

The two fractions can now be made equivalent, i.e. $\frac{2}{3} = \frac{8}{12}$ and $\frac{3}{4} = \frac{9}{12}$

so that they can be easily added together, as follows:

A =
$$\frac{2}{3} + \frac{3}{4} = \frac{8}{12} + \frac{9}{12} = \frac{8+9}{12} = \frac{17}{12}$$

i.e. A = $\frac{2}{3} + \frac{3}{4} = 1\frac{5}{12}$

Problem 10. Evaluate A, given A =
$$\frac{1}{6} + \frac{2}{7} + \frac{3}{2}$$

A suitable common denominator can be obtained by multiplying $6 \times 7 = 42$, and all three denominators divide exactly into 42.

Thus,
$$\frac{1}{6} = \frac{7}{42}, \frac{2}{7} = \frac{12}{42} \text{ and } \frac{3}{2} = \frac{63}{42}$$

Hence, $A = \frac{1}{6} + \frac{2}{7} + \frac{3}{2} = \frac{7}{42} + \frac{12}{42} + \frac{63}{42}$
 $= \frac{7 + 12 + 63}{42} = \frac{82}{42} = \frac{41}{21}$
i.e. $A = \frac{1}{6} + \frac{2}{7} + \frac{3}{2} = 1\frac{20}{21}$

Problem 11. Determine A as a single fraction, given A = $\frac{1}{x} + \frac{2}{y}$

21

A common denominator can be obtained by multiplying the two denominators together, i.e. xy

Thus,
$$\frac{1}{x} = \frac{y}{xy}$$
 and $\frac{2}{y} = \frac{2x}{xy}$
Hence, $A = \frac{1}{x} + \frac{2}{y} = \frac{y}{xy} + \frac{2x}{xy}$ i.e. $A = \frac{y + 2x}{xy}$

Note that addition, subtraction, multiplication and division of fractions may be determined using a calculator (for example, the CASIO fx-991ES PLUS).

Locate the \square and \square functions on your calculator (the latter function is a shift function found above the $\frac{\Box}{\Box}$ function) and then check the following worked problems

Problem 12. Evaluate
$$\frac{1}{4} + \frac{2}{3}$$
 using a calculator

(i) Press
$$\frac{\Box}{\Box}$$
 function

(ii) Type in 1

- (iii) Press \downarrow on the cursor key and type in 4
- (iv) $\frac{1}{4}$ appears on the screen
- (v) Press \rightarrow on the cursor key and type in +
- (vi) Press $\frac{\Box}{\Box}$ function

- (vii) Type in 2
- (viii) Press \downarrow on the cursor key and type in 3
- (ix) Press \rightarrow on the cursor key

(x) Press = and the answer
$$\frac{11}{12}$$
 appears

(xi) Press S \Leftrightarrow D function and the fraction changes to a decimal 0.9166666....

Thus, $\frac{1}{4} + \frac{2}{3} = \frac{11}{12} = 0.9167$ as a decimal, correct to 4 decimal places.

It is also possible to deal with **mixed numbers** on the calculator.

Press Shift then the $\frac{\Box}{\Box}$ function and $\Box \frac{\Box}{\Box}$ appears.

Problem 13. Evaluate $5\frac{1}{5} - 3\frac{3}{4}$ using a calculator

- (i) Press Shift then the \square function and \square \square appears on the screen
- (ii) Type in 5 then \rightarrow on the cursor key
- (iii) Type in 1 and \downarrow on the cursor key
- (iv) Type in 5 and $5\frac{1}{5}$ appears on the screen
- (v) Press \rightarrow on the cursor key
- (vi) Type in and then press Shift then the $\frac{\Box}{\Box}$ function and $5\frac{1}{5} - \Box\frac{\Box}{\Box}$ appears on the screen
- (vii) Type in 3 then \rightarrow on the cursor key
- (viii) Type in 3 and \downarrow on the cursor key

(ix) Type in 4 and
$$5\frac{1}{5} - 3\frac{3}{4}$$
 appears on the screen

(x) Press = and the answer
$$\frac{29}{20}$$
 appears

- (xi) Press shift and then $S \Leftrightarrow D$ function and $1\frac{9}{20}$ appears
- (xii) Press S ⇔ D function and the fraction changes to a decimal 1.45

Thus,
$$5\frac{1}{5} - 3\frac{3}{4} = \frac{29}{20} = 1\frac{9}{20} = 1.45$$
 as a decimal

Now try the following Practice Exercise

Practice Exercise 3 Fractions (Answers on page 815)

In problems 1 to 3, evaluate the given fractions

1.
$$\frac{1}{3} + \frac{1}{4}$$

2. $\frac{1}{5} + \frac{1}{4}$
3. $\frac{1}{6} + \frac{1}{2} - \frac{1}{5}$

In problems 4 and 5, use a calculator to evaluate the given expressions

4.
$$\frac{1}{3} - \frac{3}{4} \times \frac{8}{21}$$

5. $\frac{3}{4} \times \frac{4}{5} - \frac{2}{3} \div \frac{4}{9}$

- 6. Evaluate $\frac{3}{8} + \frac{5}{6} \frac{1}{2}$ as a decimal, correct to 4 decimal places.
- 7. Evaluate $8\frac{8}{9} \div 2\frac{2}{3}$ as a mixed number.
- 8. Evaluate $3\frac{1}{5} \times 1\frac{1}{3} 1\frac{7}{10}$ as a decimal, correct to 3 decimal places.
- 9. Determine $\frac{2}{x} + \frac{3}{y}$ as a single fraction.

1.3 Percentages

Percentages are used to give a common standard. The use of percentages is very common in many aspects of commercial life, as well as in engineering. Interest rates, sale reductions, pay rises, exams and VAT are all examples where percentages are used.

Percentages are fractions having 100 as their denominator.

For example, the fraction $\frac{40}{100}$ is written as 40% and is read as 'forty per cent'.

The easiest way to understand percentages is to go through some worked examples.

Problem 14. Express 0.275 as a percentage

 $0.275 = 0.275 \times 100\% = 27.5\%$

Problem 15. Express 17.5% as a decimal number

$$17.5\% = \frac{17.5}{100} = 0.175$$

Problem 16. Express $\frac{5}{8}$ as a percentage

$$\frac{5}{8} = \frac{5}{8} \times 100\% = \frac{500}{8}\% = 62.5\%$$

Problem 17. In two successive tests a student gains marks of 57/79 and 49/67. Is the second mark better or worse than the first?

$$57/79 = \frac{57}{79} = \frac{57}{79} \times 100\% = \frac{5700}{79}\%$$

= 72.15% correct to 2 decimal places.

$$49/67 = \frac{49}{67} = \frac{49}{67} \times 100\% = \frac{4900}{67}\%$$

= 73.13% correct to 2 decimal places

Hence, the second test mark is marginally better than the first test.

This question demonstrates how much easier it is to compare two fractions when they are expressed as percentages.

Problem 18. Express 75% as a fraction

$$75\% = \frac{75}{100} = \frac{3}{4}$$

The fraction $\frac{75}{100}$ is reduced to its simplest form by cancelling, i.e. dividing numerator and denominator by 25.

Problem 19. Express 37.5% as a fraction

$$37.5\% = \frac{37.5}{100}$$
$$= \frac{375}{1000}$$
 by multiplying numerator

and denominator by 10

$$=\frac{15}{40}$$
 by dividing numerator

and denominator by 25

$$=\frac{3}{8}$$
 by dividing numerator

and denominator by 5

Problem 20. Find 27% of £65

27% of
$$\pounds 65 = \frac{27}{100} \times 65 = \pounds 17.55$$
 by calculator

Problem 21. A 160 GB iPod is advertised as costing \pounds 190 excluding VAT. If VAT is added at 20%, what will be the total cost of the iPod?

VAT = 20% of
$$\pounds 190 = \frac{20}{100} \times 190 = \pounds 38$$

Total cost of iPod = $\pounds 190 + \pounds 38 = \pounds 228$

A quicker method to determine the total cost is: $1.20 \times \pounds 190 = \pounds 228$

Problem 22. Express 23 cm as a percentage of 72 cm, correct to the nearest 1%

23 cm as a percentage of 72 cm

$$=\frac{23}{72} \times 100\% = 31.94444\dots\%$$

= 32% correct to the nearest 1%

Problem 23. A box of screws increases in price from £45 to £52. Calculate the percentage change in cost, correct to 3 significant figures.

% change =
$$\frac{\text{new value - original value}}{\text{original value}} \times 100\%$$

= $\frac{52 - 45}{45} \times 100\% = \frac{7}{45} \times 100 = 15.6\%$
= percentage change in cost

Problem 24. A drilling speed should be set to 400 rev/min. The nearest speed available on the machine is 412 rev/min. Calculate the percentage over-speed.