SIXTH EDITION

ELECTRICAL CIRCUIT theory and technology

Electrical Circuit Theory and Technology

A fully comprehensive text for courses in electrical principles, circuit theory and electrical technology, providing 800 worked examples and over 1,350 further problems for students to work through at their own pace. This book is ideal for students studying engineering for the first time as part of BTEC National and other pre-degree vocational courses, as well as Higher Nationals, Foundation Degrees and first-year undergraduate modules.

John Bird, BSc (Hons), CEng, CSci, CMath, FITE, FIMA, FCollT, is the former Head of Applied Electronics in the Faculty of Technology at Highbury College, Portsmouth, UK. More recently he has combined freelance lecturing and examining, and is the author of over 130 textbooks on engineering and mathematical subjects with worldwide sales of over one million copies. He is currently lecturing at the Defence School of Marine and Air Engineering in the Defence College of Technical Training at HMS Sultan, Gosport, Hampshire, UK.

Electrical Circuit Theory and Technology

Sixth edition

John Bird

Sixth edition published 2017
by Routledge
2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN
and by Routledge
711 Third Avenue, New York, NY 10017
Routledge is an imprint of the Taylor \& Francis Group, an informa business

© 2017 John Bird

The right of John Bird to be identified as author of this work has been asserted by him in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

First edition published by Newnes 1997
Fifth edition published by Routledge 2014
British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
Library of Congress Cataloging in Publication Data
Names: Bird, J. O., author.
Title: Electrical circuit theory and technology / John Bird.
Description: 6th ed. | New York : Routledge, [2017] | Includes index.
Identifiers: LCCN 2016038154| ISBN 9781138673496 | ISBN 9781315561929
Subjects: LCSH: Electric circuits. | Electrical engineering.
Classification: LCC TK454 .B48 2017| DDC 621.319/2-dc23
LC record available at https://lcen.loc.gov/2016038154
ISBN: 978-1-138-67349-6 (pbk)
ISBN: 978-1-315-56192-9 (ebk)

Typeset in Times by
Servis Filmsetting Ltd, Stockport, Cheshire
Visit the companion website: www.routledge.com/cw/bird

Contents

Preface xii
Part 1 Revision of some basic mathematics 1
1 Some mathematics revision 3
1.1 Use of calculator and evaluating formulae 4
1.2 Fractions 7
1.3 Percentages 8
1.4 Ratio and proportion 10
1.5 Laws of indices 13
1.6 Brackets 16
1.7 Solving simple equations 16
1.8 Transposing formulae 19
1.9 Solving simultaneous equations 21
2 Further mathematics revision 23
2.1 Radians and degrees 24
2.2 Measurement of angles 25
2.3 Trigonometry revision 26
2.4 Logarithms and exponentials 28
2.5 Straight line graphs 33
2.6 Gradients, intercepts and equation of a graph 35
2.7 Practical straight line graphs 37
2.8 Calculating areas of common shapes 38
Main formulae for Part 1 Revision of some basic mathematics 44
Part 2 Basic electrical engineering principles 47
3 Units associated with basic electrical quantities 49
3.1 SI units 49
3.2 Charge 50
3.3 Force 50
3.4 Work 51
3.5 Power 52
3.6 Electrical potential and e.m.f. 53
3.7 Resistance and conductance 53
3.8 Electrical power and energy 54
3.9 Summary of terms, units and their symbols 55
4 An introduction to electric circuits 56
4.1 Standard symbols for electrical components 57
4.2 Electric current and quantity of electricity 57
4.3 Potential difference and resistance 58
4.4 Basic electrical measuring instruments 58
4.5 Linear and non-linear devices 59
4.6 Ohm's law 59
4.7 Multiples and sub-multiples 59
4.8 Conductors and insulators 61
4.9 Electrical power and energy 61
4.10 Main effects of electric current 64
4.11 Fuses 64
4.12 Insulation and the dangers of constant high current flow 64
5 Resistance variation 65
5.1 Resistor construction 66
5.2 Resistance and resistivity 66
5.3 Temperature coefficient of resistance 68
5.4 Resistor colour coding and ohmic values 70
6 Batteries and alternative sources of energy 73
6.1 Introduction to batteries 74
6.2 Some chemical effects of electricity 74
6.3 The simple cell 75
6.4 Corrosion 76
6.5 E.m.f. and internal resistance of a cell 76
6.6 Primary cells 78
6.7 Secondary cells 79
6.8 Lithium-ion batteries 81
6.9 Cell capacity 84
6.10 Safe disposal of batteries 84
6.11 Fuel cells 84
6.12 Alternative and renewable energy sources 85
6.13 Solar energy 86
7 Series and parallel networks 90
7.1 Series circuits 91
7.2 Potential divider 92
7.3 Parallel networks 94
7.4 Current division 96
7.5 Loading effect 99
7.6 Potentiometers and rheostats 100
7.7 Relative and absolute voltages 103
7.8 Earth potential and short circuits 104
7.9 Wiring lamps in series and in parallel 104
8 Capacitors and capacitance 106
8.1 Introduction to capacitors 107
8.2 Electrostatic field 107
8.3 Electric field strength 108
8.4 Capacitance 108
8.5 Capacitors 109
8.6 Electric flux density 110
8.7 Permittivity 110
8.8 The parallel plate capacitor 111
8.9 Capacitors connected in parallel and series 112
8.10 Dielectric strength 116
8.11 Energy stored 117
8.12 Practical types of capacitor 117
8.13 Supercapacitors 119
8.14 Discharging capacitors 121
9 Magnetic circuits 122
9.1 Introduction to magnetism and magnetic circuits 123
9.2 Magnetic fields 124
9.3 Magnetic flux and flux density 125
9.4 Magnetomotive force and magnetic field strength 125
9.5 Permeability and $B-H$ curves 126
9.6 Reluctance 127
9.7 Composite series magnetic circuits 129
9.8 Comparison between electrical and magnetic quantities 132
9.9 Hysteresis and hysteresis loss 132
Revision Test 2 134
10 Electromagnetism 135
10.1 Magnetic field due to an electric current 136
10.2 Electromagnets 137
10.3 Force on a current-carrying conductor 139
10.4 Principle of operation of a simple d.c. motor 142
10.5 Principle of operation of a moving-coil instrument 143
10.6 Force on a charge 143
11 Electromagnetic induction 145
11.1 Introduction to electromagnetic induction 146
11.2 Laws of electromagnetic induction 147
11.3 Rotation of a loop in a magnetic field 150
11.4 Inductance 151
11.5 Inductors 152
11.6 Energy stored 153
11.7 Inductance of a coil 153
11.8 Mutual inductance 155
12 Electrical measuring instruments and measurements 158
12.1 Introduction 159
12.2 Analogue instruments 159
12.3 Shunts and multipliers 159
12.4 Electronic instruments 161
12.5 The ohmmeter 161
12.6 Multimeters 162
12.7 Wattmeters 162
12.8 Instrument 'loading' effect 162
12.9 The oscilloscope 164
12.10 Virtual test and measuring instruments 169
12.11 Virtual digital storage oscilloscopes 170
12.12 Waveform harmonics 173
12.13 Logarithmic ratios 174
12.14 Null method of measurement 176
12.15 Wheatstone bridge 177
12.16 D.c. potentiometer 177
12.17 A.c. bridges 178
12.18 Measurement errors 179
13 Semiconductor diodes 182
13.1 Types of material 183
13.2 Semiconductor materials 183
13.3 Conduction in semiconductor materials 185
13.4 The $\mathrm{p}-\mathrm{n}$ junction 185
13.5 Forward and reverse bias 186
13.6 Semiconductor diodes 189
13.7 Characteristics and maximum ratings 190
13.8 Rectification 190
13.9 Zener diodes 190
13.10 Silicon controlled rectifiers 192
13.11 Light emitting diodes 193
13.12 Varactor diodes 193
13.13 Schottky diodes 193
14 Transistors 195
14.1 Transistor classification 196
14.2 Bipolar junction transistors (BJTs) 196
14.3 Transistor action 197
14.4 Leakage current 198
14.5 Bias and current flow 199
14.6 Transistor operating configurations 199
14.7 Bipolar transistor characteristics 200
14.8 Transistor parameters 201
14.9 Current gain 202
14.10 Typical BJT characteristics and maximum ratings 203
14.11 Field effect transistors 204
14.12 Field effect transistor characteristics 205
14.13 Typical FET characteristics and maximum ratings 206
14.14 Transistor amplifiers 206
14.15 Load lines 208
Revision Test 3 213
Main formulae for Part 2 Basic electrical and electronic principles 215
Part 3 Electrical principles and technology 217
15 D.c. circuit theory 219
15.1 Introduction 219
15.2 Kirchhoff's laws 220
15.3 The superposition theorem 224
15.4 General d.c. circuit theory 226
15.5 Thévenin's theorem 228
15.6 Constant-current source 233
15.7 Norton's theorem 233
15.8 Thévenin and Norton equivalent networks 236
15.9 Maximum power transfer theorem 239
16 Alternating voltages and currents 242
16.1 Introduction 243
16.2 The a.c. generator 243
16.3 Waveforms 244
16.4 A.c. values 245
16.5 Electrical safety - insulation and fuses 248
16.6 The equation of a sinusoidal waveform 248
16.7 Combination of waveforms 251
16.8 Rectification 254
16.9 Smoothing of the rectified output waveform 255
Revision Test 4 257
17 Single-phase series a.c. circuits 258
17.1 Purely resistive a.c. circuit 259
17.2 Purely inductive a.c. circuit 259
17.3 Purely capacitive a.c. circuit 260
17.4 $R-L$ series a.c. circuit 261
$17.5 \quad R-C$ series a.c. circuit 264
17.6 $R-L-C$ series a.c. circuit 266
17.7 Series resonance 269
17.8 Q-factor 270
17.9 Bandwidth and selectivity 272
17.10 Power in a.c. circuits 272
17.11 Power triangle and power factor 274
18 Single-phase parallel a.c. circuits 277
18.1 Introduction 278
$18.2 R-L$ parallel a.c. circuit 278
$18.3 \quad R-C$ parallel a.c. circuit 279
$18.4 \quad L-C$ parallel a.c. circuit 280
18.5 $L R-C$ parallel a.c. circuit 282
18.6 Parallel resonance and Q-factor 285
18.7 Power factor improvement 289
19 D.c. transients 294
19.1 Introduction 295
19.2 Charging a capacitor 295
19.3 Time constant for a $C-R$ circuit 296
19.4 Transient curves for a $C-R$ circuit 296
19.5 Discharging a capacitor 300
19.6 Camera flash 302
19.7 Current growth in an $L-R$ circuit 302
19.8 Time constant for an $L-R$ circuit 303
19.9 Transient curves for an $L-R$ circuit 303
19.10 Current decay in an $L-R$ circuit 305
19.11 Switching inductive circuits 307
19.12 The effect of time constant on a rectangular waveform 307
20 Operational amplifiers 309
20.1 Introduction to operational amplifiers 310
20.2 Some op amp parameters 311
20.3 Op amp inverting amplifier 312
20.4 Op amp non-inverting amplifier 314
20.5 Op amp voltage-follower 315
20.6 Op amp summing amplifier 315
20.7 Op amp voltage comparator 316
20.8 Op amp integrator 317
20.9 Op amp differential amplifier 318
20.10 Digital to analogue (D/A) conversion 320
20.11 Analogue to digital (A/D) conversion 320
Revision Test 5 322
21 Ways of generating electricity - the present and the future 323
21.1 Introduction 324
21.2 Generating electrical power using coal 324
21.3 Generating electrical power using oil 326
21.4 Generating electrical power using natural gas 327
21.5 Generating electrical power using nuclear energy 328
21.6 Generating electrical power using hydro power 329
21.7 Generating electrical power using pumped storage 330
21.8 Generating electrical power using wind 331
21.9 Generating electrical power using tidal power 331
21.10 Generating electrical power using biomass 333
21.11 Generating electrical power using solar energy 333
21.12 Harnessing the power of wind, tide and sun on an 'energy island' - a future possibility? 334
22 Three-phase systems 336
22.1 Introduction 337
22.2 Three-phase supply 337
22.3 Star connection 337
22.4 Delta connection 340
22.5 Power in three-phase systems 342
22.6 Measurement of power in three-phase systems 343
22.7 Comparison of star and delta connections 348
22.8 Advantages of three-phase systems 348
23 Transformers 349
23.1 Introduction 350
23.2 Transformer principle of operation 350
23.3 Transformer no-load phasor diagram 352
23.4 E.m.f. equation of a transformer 354
23.5 Transformer on-load phasor diagram 356
23.6 Transformer construction 357
23.7 Equivalent circuit of a transformer 358
23.8 Regulation of a transformer 359
23.9 Transformer losses and efficiency 360
23.10 Resistance matching 363
23.11 Auto transformers 365
23.12 Isolating transformers 367
23.13 Three-phase transformers 367
23.14 Current transformers 368
23.15 Voltage transformers 369
Revision Test 6 370
24 D.c. machines 371
24.1 Introduction 372
24.2 The action of a commutator 372
24.3 D.c. machine construction 373
24.4 Shunt, series and compound windings 373
24.5 E.m.f. generated in an armature winding 374
24.6 D.c. generators 375
24.7 Types of d.c. generator and their characteristics 376
24.8 D.c. machine losses 380
24.9 Efficiency of a d.c. generator 380
24.10 D.c. motors 381
24.11 Torque of a d.c. machine 382
24.12 Types of d.c. motor and their characteristics 383
24.13 The efficiency of a d.c. motor 387
24.14 D.c. motor starter 389
24.15 Speed control of d.c. motors 390
24.16 Motor cooling 392
25 Three-phase induction motors 393
25.1 Introduction 394
25.2 Production of a rotating magnetic field 394
25.3 Synchronous speed 396
25.4 Construction of a three-phase induction motor 397
25.5 Principle of operation of a three-phase induction motor 397
25.6 Slip 398
25.7 Rotor e.m.f. and frequency 399
25.8 Rotor impedance and current 400
25.9 Rotor copper loss 400
25.10 Induction motor losses and efficiency 401
25.11 Torque equation for an induction motor 402
25.12 Induction motor torque-speed characteristics 404
25.13 Starting methods for induction motors 405
25.14 Advantages of squirrel-cage induction motors 406
25.15 Advantages of wound rotor induction motor 407
25.16 Double cage induction motor 407
25.17 Uses of three-phase induction motors 407
Revision Test 7 408
Main formulae for Part 3 Electrical principles and technology 409
Part 4 Advanced circuit theory and technology 411
26 Revision of complex numbers 413
26.1 Introduction 413
26.2 Operations involving Cartesian complex numbers 415
26.3 Complex equations 417
26.4 The polar form of a complex number 418
26.5 Multiplication and division using complex numbers in polar form 419
26.6 De Moivre's theorem - powers and roots of complex numbers 420
27 Application of complex numbers to series a.c. circuits 423
27.1 Introduction 423
27.2 Series a.c. circuits 424
27.3 Further worked problems on series a.c. circuits 430
28 Application of complex numbers to parallel a.c. networks 435
28.1 Introduction 435
28.2 Admittance, conductance and susceptance 436
28.3 Parallel a.c. networks 439
28.4 Further worked problems on parallel a.c. networks 443
29 Power in a.c. circuits 446
29.1 Introduction 446
29.2 Determination of power in a.c. circuits 447
29.3 Power triangle and power factor 449
29.4 Use of complex numbers for determination of power 450
29.5 Power factor improvement 454
Revision Test 8 459
30 A.c. bridges 460
30.1 Introduction 461
30.2 Balance conditions for an a.c. bridge 461
30.3 Types of a.c. bridge circuit 462
30.4 Worked problems on a.c. bridges 467
31 Series resonance and Q-factor 471
31.1 Introduction 472
31.2 Series resonance 472
31.3 Q-factor 474
31.4 Voltage magnification 476
31.5 Q-factors in series 478
31.6 Bandwidth 479
31.7 Small deviations from the resonant frequency 483
32 Parallel resonance and Q-factor 486
32.1 Introduction 486
32.2 The $L R-C$ parallel network 487
32.3 Dynamic resistance 488
32.4 The $L R-C R$ parallel network 488
32.5 Q-factor in a parallel network 489
32.6 Further worked problems on parallel resonance and Q-factor 493
Revision Test 9496
33 Introduction to network analysis 497
33.1 Introduction 497
33.2 Solution of simultaneous equations using determinants 498
33.3 Network analysis using Kirchhoff's laws 499
34 Mesh-current and nodal analysis 507
34.1 Mesh-current analysis 507
34.2 Nodal analysis 511
35 The superposition theorem 518
35.1 Introduction 518
35.2 Using the superposition theorem 518
35.3 Further worked problems on the superposition theorem 523
36 Thévenin's and Norton's theorems 528
36.1 Introduction 528
36.2 Thévenin's theorem 529
36.3 Further worked problems on Thévenin's theorem 535
36.4 Norton's theorem 539
36.5 Thévenin and Norton equivalent networks 546
Revision Test 10 551
37 Delta-star and star-delta transformations 552
37.1 Introduction 552
37.2 Delta and star connections 552
37.3 Delta-star transformation 553
37.4 Star-delta transformation 561
38 Maximum power transfer theorems and impedance matching 565
38.1 Maximum power transfer theorems 566
38.2 Impedance matching 571
Revision Test 11574
39 Complex waveforms 575
39.1 Introduction 576
39.2 The general equation for a complex waveform 576
39.3 Harmonic synthesis 577
39.4 Fourier series of periodic and non-periodic functions 585
39.5 Even and odd functions and Fourier series over any range 590
39.6 R.m.s. value, mean value and the form factor of a complex wave 594
39.7 Power associated with complex waves 597
39.8 Harmonics in single-phase circuits 599
39.9 Further worked problems on harmonics in single-phase circuits 602
39.10 Resonance due to harmonics 606
39.11 Sources of harmonics 608
40 A numerical method of harmonic analysis 612
40.1 Introduction 612
40.2 Harmonic analysis on data given in tabular or graphical form 612
40.3 Complex waveform considerations 616
41 Magnetic materials 619
41.1 Revision of terms and units used with magnetic circuits 620
41.2 Magnetic properties of materials 621
41.3 Hysteresis and hysteresis loss 622
41.4 Eddy current loss 626
41.5 Separation of hysteresis and eddy current losses 629
41.6 Non-permanent magnetic materials 631
41.7 Permanent magnetic materials 633
Revision Test 12 634
42 Dielectrics and dielectric loss 635
42.1 Electric fields, capacitance and permittivity 635
42.2 Polarization 636
42.3 Dielectric strength 636
42.4 Thermal effects 637
42.5 Mechanical properties 638
42.6 Types of practical capacitor 638
42.7 Liquid dielectrics and gas insulation 638
42.8 Dielectric loss and loss angle 638
43 Field theory 642
43.1 Field plotting by curvilinear squares 643
43.2 Capacitance between concentric cylinders 646
43.3 Capacitance of an isolated twin line 651
43.4 Energy stored in an electric field 654
43.5 Induced e.m.f. and inductance 656
43.6 Inductance of a concentric cylinder (or coaxial cable) 656
43.7 Inductance of an isolated twin line 659
43.8 Energy stored in an electromagnetic field 662
44 Attenuators 665
44.1 Introduction 666
44.2 Characteristic impedance 666
44.3 Logarithmic ratios 668
44.4 Symmetrical T- and π-attenuators 670
44.5 Insertion loss 675
44.6 Asymmetrical T- and π-sections 678
44.7 The L-section attenuator 681
44.8 Two-port networks in cascade 683
44.9 $A B C D$ parameters 686
44.10 $A B C D$ parameters for networks 689
44.11 Characteristic impedance in terms of $A B C D$ parameters 695
Revision Test 13 697
45 Filter networks 698
45.1 Introduction 698
45.2 Basic types of filter sections 699
45.3 The characteristic impedance and the attenuation of filter sections 701
45.4 Ladder networks 702
45.5 Low-pass filter sections 703
45.6 High-pass filter sections 709
45.7 Propagation coefficient and time delay in filter sections 714
45.8 ' m-derived' filter sections 720
45.9 Practical composite filters 725
46 Magnetically coupled circuits 728
46.1 Introduction 728
46.2 Self-inductance 728
46.3 Mutual inductance 729
46.4 Coupling coefficient 730
46.5 Coils connected in series 731
46.6 Coupled circuits 734
46.7 Dot rule for coupled circuits 739
47 Transmission lines 746
47.1 Introduction 746
47.2 Transmission line primary constants 747
47.3 Phase delay, wavelength and velocity of propagation 748
47.4 Current and voltage relationships 749
47.5 Characteristic impedance and propagation coefficient in terms of the primary constants 751
47.6 Distortion on transmission lines 755
47.7 Wave reflection and the reflection coefficient 757
47.8 Standing-waves and the standing-wave ratio 760
48 Transients and Laplace transforms 765
48.1 Introduction 766
48.2 Response of $R-C$ series circuit to a step input 766
48.3 Response of $R-L$ series circuit to a step input 768
48.4 $L-R-C$ series circuit response 771
48.5 Introduction to Laplace transforms 774
48.6 Inverse Laplace transforms and the solution of differential equations 779
48.7 Laplace transform analysis directly from the circuit diagram 784
48.8 $L-R-C$ series circuit using Laplace transforms 794
48.9 Initial conditions 797
Revision Test 14 801
Main formulae for Part 4 Advanced circuit theory and technology 802
Part 5 General reference 807
Standard electrical quantities - their symbols and units 809
Greek alphabet 812
Common prefixes 813
Resistor colour coding and ohmic values 814
Answers to Practice Exercises 815
Index 837

On the Website

Some practical laboratory experiments

1 Ohm's law 2
2 Series-parallel d.c. circuit 3
3 Superposition theorem 4
4 Thévenin's theorem 6
5 Use of a CRO to measure voltage, frequency and phase 8
6 Use of a CRO with a bridge rectifier circuit 9
7 Measurement of the inductance of a coil 10
8 Series a.c. circuit and resonance 11
9 Parallel a.c. circuit and resonance 13
10 Charging and discharging a capacitor 15To download and edit go to:www.routledge.com/cw/bird

Preface

Electrical Circuit Theory and Technology 6th Edition

 provides coverage for a wide range of courses that contain electrical principles, circuit theory and technology in their syllabuses, from introductory to degree level and including Edexcel BTEC Levels 2 to 5 National Certificate/Diploma, Higher National Certificate/Diploma and Foundation degree in EngineeringIn this new sixth edition, new material added includes some mathematics revision needed for electrical and electronic principles, ways of generating electricity the present and the future (including more on renewable energy), more on lithium-ion batteries, along with other minor modifications.

The text is set out in five parts as follows:
PART 1, comprising chapters 1 to 12, involves Revision of some Basic Mathematics needed for Electrical and Electronic Principles.
PART 2, involving chapters 3 to 14 , contains Basic Electrical Engineering Principles which any student wishing to progress in electrical engineering would need to know. An introduction to units, electrical circuits, resistance variation, batteries and alternative sources of energy, series and parallel circuits, capacitors and capacitance, magnetic circuits, electromagnetism, electromagnetic induction, electrical measuring instruments and measurements, semiconductor diodes and transistors are all included in this section.
PART 3, involving chapters 15 to 25, contains Electrical Principles and Technology suitable for National Certificate, National Diploma and City and Guilds courses in electrical and electronic engineering. D.c. circuit theory, alternating voltages and currents, singlephase series and parallel circuits, d.c. transients, operational amplifiers, ways of generating electricity, three-phase systems, transformers, d.c. machines and three-phase induction motors are all included in this section.

PART 4, involving chapters 26 to 48, contains Advanced Circuit Theory and Technology suitable for Degree, Foundation degree, Higher National Certificate/Diploma and City and Guilds courses in electrical
and electronic/telecommunications engineering. The three earlier sections of the book will provide a valuable reference/revision for students at this level.

Complex numbers and their application to series and parallel networks, power in a.c. circuits, a.c. bridges, series and parallel resonance and Q-factor, network analysis involving Kirchhoff's laws, mesh and nodal analysis, the superposition theorem, Thévenin's and Norton's theorems, delta-star and star-delta transforms, maximum power transfer theorems and impedance matching, complex waveforms, Fourier series, harmonic analysis, magnetic materials, dielectrics and dielectric loss, field theory, attenuators, filter networks, magnetically coupled circuits, transmission line theory and transients and Laplace transforms are all included in this section.

PART 5 provides a short General Reference for standard electrical quantities - their symbols and units, the Greek alphabet, common prefixes and resistor colour coding and ohmic values.
At the beginning of each of the 48 chapters a brief explanation as to why it is important to understand the material contained within that chapter is included, together with a list of learning objectives.
At the end of each of the first four parts of the text is a handy reference of the main formulae used.
There are a number of Internet downloads freely available to both students and lecturers/instructors; these are listed on page xiii.
It is not possible to acquire a thorough understanding of electrical principles, circuit theory and technology without working through a large number of numerical problems. It is for this reason that Electrical Circuit Theory and Technology 6th Edition contains nearly $\mathbf{8 0 0}$ detailed worked problems, together with some 1350 further problems (with answers at the back of the book), arranged within 202 Practice Exercises that appear every few pages throughout the text. Some 1153 line diagrams further enhance the understanding of the theory.

Fourteen Revision Tests have been included, interspersed within the text every few chapters. For example, Revision Test 1 tests understanding of chapters 3 to 6, Revision Test 2 tests understanding of chapters 7 to 9, Revision Test 3 tests understanding of chapters 10 to 14 , and so on. These Revision Tests do not have answers given since it is envisaged that lecturers/instructors could set the Revision Tests for students to attempt as part of their course structure. Lecturers/instructors may obtain a complimentary set of solutions of the Revision Tests in an Instructor's Manual available from the publishers via the internet - see below.

Learning by example is at the heart of Electrical Circuit Theory and Technology 6th Edition.

JOHN BIRD

> Royal Naval Defence College of Marine and Air Engineering, HMS Sultan, formerly University of Portsmouth and Highbury College, Portsmouth

John Bird is the former Head of Applied Electronics in the Faculty of Technology at Highbury College, Portsmouth, UK. More recently, he has combined freelance lecturing at the University of Portsmouth with Examiner responsibilities for Advanced Mathematics with City and Guilds, and examining for the International Baccalaureate. He is the author of some 130 textbooks on engineering and mathematical subjects with worldwide sales of over one million copies. He is currently lecturing at the Defence School of Marine and Air Engineering in the Defence College of Technical Training at HMS Sultan, Gosport, Hampshire, UK.

Free Web downloads

The following support material is available from www.routledge.com/cw/bird

For Students:

1. Full solutions to all $\mathbf{1 3 5 0}$ further questions in the Practice Exercises
2. A set of formulae for each of the first four sections of the text
3. Multiple choice questions
4. Information on 38 Engineers/Scientists mentioned in the text

For Lecturers/Instructors:
1-4. As per students 1-4 above
5. Full solutions and marking scheme for each of the 14 Revision Tests; also, each test may be downloaded.
6. Lesson Plans and revision material. Typical 30-week lesson plans for 'Electrical and Electronic Principles', Unit 6, and 'Further Electrical Principles', Unit 64, are included, together with two practice examination question papers (with solutions) for each of the modules.
7. Ten practical Laboratory Experiments are available. It may be that tutors will want to edit these experiments to suit their own equipment/component availability.
8. All 1153 illustrations used in the text may be downloaded for use in PowerPoint Presentations.

Part 1

Revision of some basic mathematics

Chapter 1

Some mathematics revision

Why it is important to understand: Some mathematics revision
Mathematics is a vital tool for professional and chartered engineers. It is used in electrical and electronic engineering, in mechanical and manufacturing engineering, in civil and structural engineering, in naval architecture and marine engineering and in aeronautical and rocket engineering. In these various branches of engineering, it is very often much cheaper and safer to design your artefact with the aid of mathematics - rather than through guesswork. 'Guesswork' may be reasonably satisfactory if you are designing an exactly similar artefact as one that has already proven satisfactory; however, the classification societies will usually require you to provide the calculations proving that the artefact is safe and sound. Moreover, these calculations may not be readily available to you and you may have to provide fresh calculations, to prove that your artefact is 'roadworthy'. For example, if you design a tall building or a long bridge by 'guesswork', and the building or bridge do not prove to be structurally reliable, it could cost you a fortune to rectify the deficiencies. This cost may dwarf the initial estimate you made to construct these structures, and cause you to go bankrupt. Thus, without mathematics, the prospective professional or chartered engineer is very severely disadvantaged.
Knowledge of mathematics provides the basis for all engineering.

At the end of this chapter you should be able to:

- use a calculator and evaluate formulae
- manipulate fractions
- understand and perform calculations with percentages
- appreciate ratios and direct and inverse proportion
- understand and use the laws of indices
- expand equations containing brackets
- solve simple equations
- transpose formulae
- solve simultaneous equations in two unknowns

1.1 Use of calculator and evaluating formulae

In engineering, calculations often need to be performed. For simple numbers it is useful to be able to use mental arithmetic. However, when numbers are larger an electronic calculator needs to be used.

In engineering calculations it is essential to have a scientific notation calculator which will have all the necessary functions needed, and more. This chapter assumes you have a CASIO fx-991ES PLUS calculator, or similar. If you can accurately use a calculator, your confidence with engineering calculations will improve.

Check that you can use a calculator in the following Practice Exercise.

Practice Exercise 1 Use of calculator

(Answers on page 815)

1. Evaluate
$378.37-298.651+45.64-94.562$
2. Evaluate $\frac{17.35 \times 34.27}{41.53 \div 3.76}$ correct to 3 decimal places
3. Evaluate $\frac{(4.527+3.63)}{(452.51 \div 34.75)}+0.468$ correct to 5 significant figures
4. Evaluate $52.34-\frac{(912.5 \div 41.46)}{(24.6-13.652)}$ correct to 3 decimal places
5. Evaluate $\frac{52.14 \times 0.347 \times 11.23}{19.73 \div 3.54}$ correct to 4 significant figures
6. Evaluate 6.85^{2} correct to 3 decimal places
7. Evaluate $(0.036)^{2}$ in engineering form
8. Evaluate 1.3^{3}
9. Evaluate $(0.38)^{3}$ correct to 4 decimal places
10. Evaluate $(0.018)^{3}$ in engineering form
11. Evaluate $\frac{1}{0.00725}$ correct to 1 decimal place
12. Evaluate $\frac{1}{0.065}-\frac{1}{2.341}$ correct to 4 significant figures
13. Evaluate 2.1^{4}
14. Evaluate $(0.22)^{5}$ correct to 5 significant figures in engineering form
15. Evaluate $(1.012)^{7}$ correct to 4 decimal places
16. Evaluate $1.1^{3}+2.9^{4}-4.4^{2}$ correct to 4 significant figures
17. Evaluate $\sqrt{34528}$ correct to 2 decimal places
18. Evaluate $\sqrt[3]{17}$ correct to 3 decimal places
19. Evaluate $\sqrt[6]{2451}-\sqrt[4]{46}$ correct to 3 decimal places

Express the answers to questions 20 to 23 in engineering form.
20. Evaluate $5 \times 10^{-3} \times 7 \times 10^{8}$
21. Evaluate $\frac{6 \times 10^{3} \times 14 \times 10^{-4}}{2 \times 10^{6}}$
22. Evaluate $\frac{56.43 \times 10^{-3} \times 3 \times 10^{4}}{8.349 \times 10^{3}}$ correct to 3 decimal places
23. Evaluate $\frac{99 \times 10^{5} \times 6.7 \times 10^{-3}}{36.2 \times 10^{-4}}$ correct to 4 significant figures
24. Evaluate $\frac{4}{5}-\frac{1}{3}$ as a decimal, correct to 4 decimal places
25. Evaluate $\frac{2}{3}-\frac{1}{6}+\frac{3}{7}$ as a fraction
26. Evaluate $2 \frac{5}{6}+1 \frac{5}{8}$ as a decimal, correct to 4 significant figures
27. Evaluate $5 \frac{6}{7}-3 \frac{1}{8}$ as a decimal, correct to 4 significant figures
28. Evaluate $\frac{3}{4} \times \frac{4}{5}-\frac{2}{3} \div \frac{4}{9}$ as a fraction
29. Evaluate $8 \frac{8}{9} \div 2 \frac{2}{3}$ as a mixed number
30. Evaluate $3 \frac{1}{5} \times 1 \frac{1}{3}-1 \frac{7}{10}$ as a decimal, correct to 3 decimal places
31. Evaluate $\frac{\left(4 \frac{1}{5}-1 \frac{2}{3}\right)}{\left(3 \frac{1}{4} \times 2 \frac{3}{5}\right)}-\frac{2}{9}$ as a decimal, correct to 3 significant figures
In questions 32 to 38 , evaluate correct to 4 decimal places.
32. Evaluate $\sin 67^{\circ}$
33. Evaluate $\tan 71^{\circ}$
34. Evaluate $\cos 63.74^{\circ}$
35. Evaluate $\tan 39.55^{\circ}-\sin 52.53^{\circ}$
36. Evaluate $\sin (0.437 \mathrm{rad})$
37. Evaluate $\tan (5.673 \mathrm{rad})$
38. Evaluate $\frac{\left(\sin 42.6^{\circ}\right)\left(\tan 83.2^{\circ}\right)}{\cos 13.8^{\circ}}$

In questions 39 to 45 , evaluate correct to 4 significant figures.
39. 1.59π
40. $2.7(\pi-1)$
41. $\pi^{2}(\sqrt{13}-1)$
42. $8.5 e^{-2.5}$
43. $3 e^{(2 \pi-1)}$
44. $\sqrt{\left[\frac{5.52 \pi}{2 e^{-2} \times \sqrt{26.73}}\right]}$
45. $\sqrt{\left[\frac{e^{(2-\sqrt{3})}}{\pi \times \sqrt{8.57}}\right]}$

Evaluation of formulae

The statement $\mathbf{y}=\mathbf{m} \mathbf{x}+\mathbf{c}$ is called a formula for y in terms of m, x and c .
y, m, x and c are called symbols.
When given values of m, x and c we can evaluate y.
There are a large number of formulae used in engineering and in this section we will insert numbers in place of symbols to evaluate engineering quantities.
Here are some practical examples. Check with your calculator that you agree with the working and answers.

Problem 1. In an electrical circuit the voltage V is given by Ohm's law, i.e. $V=I R$. Find, correct to 4 significant figures, the voltage when $\mathrm{I}=5.36 \mathrm{~A}$ and $\mathrm{R}=14.76 \Omega$

$$
\mathrm{V}=\mathrm{IR}=\mathrm{I} \times \mathrm{R}=5.36 \times 14.76
$$

Hence, voltage $V=79.11 \mathrm{~V}$, correct to 4 significant figures

Problem 2. Velocity v is given by $\mathrm{v}=\mathrm{u}+$ at. If $u=9.54 \mathrm{~m} / \mathrm{s}, \mathrm{a}=3.67 \mathrm{~m} / \mathrm{s}^{2}$ and $\mathrm{t}=7.82 \mathrm{~s}$, find v , correct to 3 significant figures.

$$
\begin{aligned}
\mathrm{v}=\mathrm{u}+\mathrm{at} & =9.54+3.67 \times 7.82 \\
& =9.54+28.6994=38.2394
\end{aligned}
$$

Hence, velocity $\mathbf{v}=\mathbf{3 8 . 2} \mathbf{~ m} / \mathrm{s}$, correct to $\mathbf{3}$ significant figures

Problem 3. The area, A, of a circle is given by $\mathrm{A}=\pi \mathrm{r}^{2}$. Determine the area correct to 2 decimal places, given radius $r=5.23 \mathrm{~m}$.

$$
\mathrm{A}=\pi \mathrm{r}^{2}=\pi(5.23)^{2}=\pi(27.3529)
$$

Hence, area, $\mathbf{A}=\mathbf{8 5 . 9 3} \mathbf{m}^{2}$, correct to $\mathbf{2}$ decimal places
Problem 4. Density $=\frac{\text { mass }}{\text { volume }}$. Find the density when the mass is 6.45 kg and the volume is $300 \times 10^{-6} \mathrm{~m}^{3}$.

Density $=\frac{\text { mass }}{\text { volume }}=\frac{6.45 \mathrm{~kg}}{300 \times 10^{-6} \mathrm{~m}^{3}}=\mathbf{2 1 5 0 0} \mathbf{k g} / \mathbf{m}^{3}$

Problem 5. The power, P watts, dissipated in an electrical circuit is given by the formula $P=\frac{V^{2}}{R}$. Evaluate the power, correct to 4 significant figures, given that $\mathrm{V}=230 \mathrm{~V}$ and $\mathrm{R}=35.63 \Omega$

$$
\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{(230)^{2}}{35.63}=\frac{52900}{35.63}=1484.70390 \ldots
$$

Press ENG and $1.48470390 . . \times 10^{3}$ appears on the screen
Hence, power, $\mathrm{P}=1485 \mathrm{~W}$ or 1.485 kW correct to 4 significant figures.

Problem 6. Resistance, R Ω, varies with temperature according to the formula $\mathrm{R}=\mathrm{R}_{0}(1+\alpha \mathrm{t})$. Evaluate R , correct to 3 significant figures, given $\mathrm{R}_{0}=14.59, \alpha=0.0043$ and $\mathrm{t}=80$

$$
\begin{aligned}
\mathrm{R} & =\mathrm{R}_{0}(1+\alpha \mathrm{t})=14.59[1+(0.0043)(80)] \\
& =14.59(1+0.344)=14.59(1.344)
\end{aligned}
$$

Hence, resistance, $R=\mathbf{1 9 . 6} \Omega$, correct to 3 significant figures

Problem 7. The current, I amperes, in an a.c. circuit is given by: $I=\frac{V}{\sqrt{\left(R^{2}+X^{2}\right)}}$ Evaluate the current, correct to 2 decimal places, when

$$
\mathrm{V}=250 \mathrm{~V}, \mathrm{R}=25.0 \Omega \text { and } \mathrm{X}=18.0 \Omega
$$

$$
\mathrm{I}=\frac{\mathrm{V}}{\sqrt{\left(\mathrm{R}^{2}+\mathrm{X}^{2}\right)}}=\frac{250}{\sqrt{\left(25.0^{2}+18.0^{2}\right)}}=8.11534341 \ldots
$$

Hence, current, $I=8.12 \mathrm{~A}$, correct to 2 decimal places

Now try the following Practice Exercise

Practice Exercise 2 Evaluation of formulae (Answers on page 815)

1. The area A of a rectangle is given by the formula $\mathrm{A}=\mathrm{l} \times \mathrm{b}$. Evaluate the area, correct to 2 decimal places, when $1=12.4 \mathrm{~cm}$ and $\mathrm{b}=5.37 \mathrm{~cm}$
2. The circumference C of a circle is given by the formula $\mathrm{C}=2 \pi \mathrm{r}$. Determine the circumference, correct to 2 decimal places, given $\mathrm{r}=8.40 \mathrm{~mm}$
3. A formula used in connection with gases is $R=\frac{P V}{T}$. Evaluate R when $\mathrm{P}=1500, \mathrm{~V}=5$ and $\mathrm{T}=200$
4. The velocity of a body is given by $v=u+a t$. The initial velocity u is measured when time t is 15 seconds and found to be $12 \mathrm{~m} / \mathrm{s}$. If the acceleration a is $9.81 \mathrm{~m} / \mathrm{s}^{2}$ calculate the final velocity v
5. Calculate the current I in an electrical circuit, correct to 3 significant figures, when $\mathrm{I}=\mathrm{V} / \mathrm{R}$ amperes when the voltage V is measured and
found to be 7.2 V and the resistance R is 17.7Ω
6. Find the distance s, given that $s=\frac{1}{2} g t^{2}$. Time $t=0.032$ seconds and acceleration due to gravity $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$. Give the answer in millimetres correct to 3 significant figures.
7. The energy stored in a capacitor is given by $\mathrm{E}=\frac{1}{2} \mathrm{CV}^{2}$ joules. Determine the energy when capacitance $\mathrm{C}=5 \times 10^{-6}$ farads and voltage $\mathrm{V}=240 \mathrm{~V}$
8. Find the area A of a triangle, correct to 1 decimal place, given $\mathrm{A}=\frac{1}{2} \mathrm{bh}$, when the base length b is 23.42 m and the height h is 53.7 m
9. Resistance R_{2} is given by $\mathrm{R}_{2}=\mathrm{R}_{1}(1+\alpha \mathrm{t})$. Find R_{2}, correct to 4 significant figures, when $\mathrm{R}_{1}=220, \alpha=0.00027$ and $\mathrm{t}=75.6$
10. Density $=\frac{\text { mass }}{\text { volume }}$. Find the density, correct to 4 significant figures, when the mass is 2.462 kg and the volume is $173 \mathrm{~cm}^{3}$. Give the answer in units of $\mathrm{kg} / \mathrm{m}^{3}$. Note that $1 \mathrm{~cm}^{3}=10^{-6} \mathrm{~m}^{3}$
11. Evaluate resistance R_{T}, correct to 4 significant figures, given $\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}$ when $\quad R_{1}=5.5 \Omega, \quad R_{2}=7.42 \Omega \quad$ and $\mathrm{R}_{3}=12.6 \Omega$
12. The potential difference, V volts, available at battery terminals is given by $\mathrm{V}=\mathrm{E}-\mathrm{Ir}$. Evaluate V when $E=5.62, I=0.70$ and $\mathrm{R}=4.30$
13. The current I amperes flowing in a number of cells is given by $I=\frac{n E}{R+n r}$. Evaluate the current, correct to 3 significant figures, when $\mathrm{n}=36$. $\mathrm{E}=2.20, \mathrm{R}=2.80$ and $\mathrm{r}=0.50$
14. Energy, E joules, is given by the formula $\mathrm{E}=\frac{1}{2} \mathrm{LI}^{2}$. Evaluate the energy when $\mathrm{L}=5.5 \mathrm{H}$ and $\mathrm{I}=1.2 \mathrm{~A}$
15. The current I amperes in an a.c. circuit is given by $I=\frac{V}{\sqrt{\left(R^{2}+X^{2}\right)}}$. Evaluate the
current, correct to 4 significant figures, when $\mathrm{V}=250 \mathrm{~V}, \mathrm{R}=11.0 \Omega$ and $\mathrm{X}=16.2 \Omega$

1.2 Fractions

An example of a fraction is $\frac{2}{3}$ where the top line, i.e. the 2 , is referred to as the numerator and the bottom line, i.e. the 3 , is referred to as the denominator.

A proper fraction is one where the numerator is smaller than the denominator, examples being $\frac{2}{3}, \frac{1}{2}$, $\frac{3}{8}, \frac{5}{16}$, and so on.

An improper fraction is one where the denominator is smaller than the numerator, examples being $\frac{3}{2}, \frac{2}{1}, \frac{8}{3}$, $\frac{16}{5}$, and so on.

Addition of fractions is demonstrated in the following worked problems.

Problem 8. Evaluate A, given $\mathrm{A}=\frac{1}{2}+\frac{1}{3}$
The lowest common denominator of the two denominators 2 and 3 is 6 , i.e. 6 is the lowest number that both 2 and 3 will divide into.

Then $\frac{1}{2}=\frac{3}{6}$ and $\frac{1}{3}=\frac{2}{6}$ i.e. both $\frac{1}{2}$ and $\frac{1}{3}$ have the common denominator, namely 6 .

The two fractions can therefore be added as:

$$
A=\frac{\mathbf{1}}{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{3}}=\frac{3}{6}+\frac{2}{6}=\frac{3+2}{6}=\frac{\mathbf{5}}{\mathbf{6}}
$$

Problem 9. Evaluate A, given $A=\frac{2}{3}+\frac{3}{4}$
A common denominator can be obtained by multiplying the two denominators together, i.e. the common denominator is $3 \times 4=12$
The two fractions can now be made equivalent, i.e. $\frac{2}{3}=\frac{8}{12}$ and $\frac{3}{4}=\frac{9}{12}$
so that they can be easily added together, as follows:
$\mathrm{A}=\frac{2}{3}+\frac{3}{4}=\frac{8}{12}+\frac{9}{12}=\frac{8+9}{12}=\frac{17}{12}$
i.e. $A=\frac{2}{3}+\frac{3}{4}=1 \frac{5}{12}$

Problem 10. Evaluate A, given $A=\frac{1}{6}+\frac{2}{7}+\frac{3}{2}$
A suitable common denominator can be obtained by multiplying $6 \times 7=42$, and all three denominators divide exactly into 42 .

Thus, $\frac{1}{6}=\frac{7}{42}, \frac{2}{7}=\frac{12}{42}$ and $\frac{3}{2}=\frac{63}{42}$
Hence, $\quad \mathrm{A}=\frac{1}{6}+\frac{2}{7}+\frac{3}{2}=\frac{7}{42}+\frac{12}{42}+\frac{63}{42}$

$$
=\frac{7+12+63}{42}=\frac{82}{42}=\frac{41}{21}
$$

i.e. $\quad A=\frac{\mathbf{1}}{\mathbf{6}}+\frac{\mathbf{2}}{\mathbf{7}}+\frac{\mathbf{3}}{\mathbf{2}}=\mathbf{1 2 0} \frac{\mathbf{2 1}}{2}$

Problem 11. Determine A as a single fraction, given $\mathrm{A}=\frac{1}{\mathrm{x}}+\frac{2}{\mathrm{y}}$

A common denominator can be obtained by multiplying the two denominators together, i.e. xy

Thus, $\frac{1}{x}=\frac{y}{x y}$ and $\frac{2}{y}=\frac{2 x}{x y}$
Hence, $A=\frac{1}{x}+\frac{2}{y}=\frac{y}{x y}+\frac{2 x}{x y}$ i.e. $A=\frac{y+2 x}{x y}$
Note that addition, subtraction, multiplication and division of fractions may be determined using a calculator (for example, the CASIO fx-991ES PLUS).

Locate the $\frac{\square}{\square}$ and $\square \frac{\square}{\square}$ functions on your calculator (the latter function is a shift function found above the $\frac{\square}{\square}$ function) and then check the following worked problems.

Problem 12. Evaluate $\frac{1}{4}+\frac{2}{3}$ using a calculator
(i) Press $\frac{\square}{\square}$ function
(ii) Type in 1
(iii) Press \downarrow on the cursor key and type in 4
(iv) $\frac{1}{4}$ appears on the screen
(v) Press \rightarrow on the cursor key and type in +
(vi) Press $\frac{\square}{\square}$ function
(vii) Type in 2
(viii) Press \downarrow on the cursor key and type in 3
(ix) Press \rightarrow on the cursor key
(x) Press $=$ and the answer $\frac{11}{12}$ appears
(xi) Press $\mathrm{S} \Leftrightarrow \mathrm{D}$ function and the fraction changes to a decimal 0.9166666....
Thus, $\frac{\mathbf{1}}{\mathbf{4}}+\frac{\mathbf{2}}{\mathbf{3}}=\frac{\mathbf{1 1}}{\mathbf{1 2}}=\mathbf{0 . 9 1 6 7}$ as a decimal, correct to 4 decimal places.

It is also possible to deal with mixed numbers on the calculator.

Press Shift then the $\frac{\square}{\square}$ function and $\square \frac{\square}{\square}$ appears.

Problem 13. Evaluate $5 \frac{1}{5}-3 \frac{3}{4}$ using a calculator
(i) Press Shift then the $\frac{\square}{\square}$ function and $\square \frac{\square}{\square}$ appears on the screen
(ii) Type in 5 then \rightarrow on the cursor key
(iii) Type in 1 and \downarrow on the cursor key
(iv) Type in 5 and $5 \frac{1}{5}$ appears on the screen
(v) Press \rightarrow on the cursor key
(vi) Type in - and then press Shift then the $\frac{\square}{\square}$ function and $5 \frac{1}{5}-\square \frac{\square}{\square}$ appears on the screen
(vii) Type in 3 then \rightarrow on the cursor key
(viii) Type in 3 and \downarrow on the cursor key
(ix) Type in 4 and $5 \frac{1}{5}-3 \frac{3}{4}$ appears on the screen
(x) Press $=$ and the answer $\frac{29}{20}$ appears
(xi) Press shift and then $S \Leftrightarrow D$ function and $1 \frac{9}{20}$ appears
(xii) Press $\mathrm{S} \Leftrightarrow \mathrm{D}$ function and the fraction changes to a decimal 1.45

Thus, $\mathbf{5} \frac{\mathbf{5}}{\mathbf{5}}-\mathbf{3} \frac{\mathbf{3}}{\mathbf{4}}=\frac{\mathbf{2 9}}{\mathbf{2 0}}=\mathbf{1} \frac{\mathbf{9}}{\mathbf{2 0}}=\mathbf{1 . 4 5}$ as a decimal

Now try the following Practice Exercise

Practice Exercise 3 Fractions (Answers on page 815)

In problems 1 to 3 , evaluate the given fractions

1. $\frac{1}{3}+\frac{1}{4}$
2. $\frac{1}{5}+\frac{1}{4}$
3. $\frac{1}{6}+\frac{1}{2}-\frac{1}{5}$

In problems 4 and 5, use a calculator to evaluate the given expressions
4. $\frac{1}{3}-\frac{3}{4} \times \frac{8}{21}$
5. $\frac{3}{4} \times \frac{4}{5}-\frac{2}{3} \div \frac{4}{9}$
6. Evaluate $\frac{3}{8}+\frac{5}{6}-\frac{1}{2}$ as a decimal, correct to 4 decimal places.
7. Evaluate $8 \frac{8}{9} \div 2 \frac{2}{3}$ as a mixed number.
8. Evaluate $3 \frac{1}{5} \times 1 \frac{1}{3}-1 \frac{7}{10}$ as a decimal, correct to 3 decimal places.
9. Determine $\frac{2}{x}+\frac{3}{y}$ as a single fraction.

1.3 Percentages

Percentages are used to give a common standard. The use of percentages is very common in many aspects of commercial life, as well as in engineering. Interest rates, sale reductions, pay rises, exams and VAT are all examples where percentages are used.
Percentages are fractions having 100 as their denominator.

For example, the fraction $\frac{40}{100}$ is written as 40% and is read as 'forty per cent'.

The easiest way to understand percentages is to go through some worked examples.

Problem 14. Express 0.275 as a percentage

$$
0.275=0.275 \times 100 \%=\mathbf{2 7 . 5} \%
$$

Problem 15. Express 17.5% as a decimal number

$$
17.5 \%=\frac{17.5}{100}=\mathbf{0 . 1 7 5}
$$

Problem 16. Express $\frac{5}{8}$ as a percentage

$$
\frac{5}{8}=\frac{5}{8} \times 100 \%=\frac{500}{8} \%=\mathbf{6 2 . 5} \%
$$

Problem 17. In two successive tests a student gains marks of 57/79 and 49/67. Is the second mark better or worse than the first?

$$
\begin{aligned}
57 / 79 & =\frac{57}{79}=\frac{57}{79} \times 100 \%=\frac{5700}{79} \% \\
& =\mathbf{7 2 . 1 5} \% \text { correct to } 2 \text { decimal places. }
\end{aligned}
$$

$$
\begin{aligned}
49 / 67 & =\frac{49}{67}=\frac{49}{67} \times 100 \%=\frac{4900}{67} \% \\
& =\mathbf{7 3 . 1 3} \% \text { correct to } 2 \text { decimal places }
\end{aligned}
$$

Hence, the second test mark is marginally better than the first test.

This question demonstrates how much easier it is to compare two fractions when they are expressed as percentages.

Problem 18. Express 75% as a fraction

$$
75 \%=\frac{75}{100}=\frac{3}{\mathbf{4}}
$$

The fraction $\frac{75}{100}$ is reduced to its simplest form by cancelling, i.e. dividing numerator and denominator by 25.

Problem 19. Express 37.5% as a fraction

$$
\begin{aligned}
37.5 \% & =\frac{37.5}{100} \\
& =\frac{375}{1000} \text { by multiplying numerator }
\end{aligned}
$$

and denominator by 10
$=\frac{15}{40}$ by dividing numerator
and denominator by 25
$=\frac{\mathbf{3}}{\mathbf{8}}$ by dividing numerator
and denominator by 5

Problem 20. Find 27% of $£ 65$

27% of $£ 65=\frac{27}{100} \times 65=\mathfrak{£ 1 7 . 5 5}$ by calculator

Problem 21. A 160 GB iPod is advertised as costing $£ 190$ excluding VAT. If VAT is added at 20%, what will be the total cost of the iPod?

$$
\text { VAT }=20 \% \text { of } £ 190=\frac{20}{100} \times 190=£ 38
$$

$$
\text { Total cost of iPod }=£ 190+£ 38=£ 228
$$

A quicker method to determine the total cost is:
$1.20 \times £ 190=£ \mathbf{2 2 8}$

Problem 22. Express 23 cm as a percentage of 72 cm , correct to the nearest 1%

23 cm as a percentage of 72 cm

$$
\begin{aligned}
& =\frac{23}{72} \times 100 \%=31.94444 \ldots \ldots \% \\
& =\mathbf{3 2} \% \text { correct to the nearest } 1 \%
\end{aligned}
$$

Problem 23. A box of screws increases in price from $£ 45$ to $£ 52$. Calculate the percentage change in cost, correct to 3 significant figures.

$$
\begin{aligned}
\% \text { change } & =\frac{\text { new value }- \text { original value }}{\text { original value }} \times 100 \% \\
& =\frac{52-45}{45} \times 100 \%=\frac{7}{45} \times 100=\mathbf{1 5 . 6 \%} \\
& =\text { percentage change in cost }
\end{aligned}
$$

Problem 24. A drilling speed should be set to 400 $\mathrm{rev} / \mathrm{min}$. The nearest speed available on the machine is $412 \mathrm{rev} / \mathrm{min}$. Calculate the percentage over-speed.

